mirror of
https://github.com/aladdinpersson/Machine-Learning-Collection.git
synced 2026-02-20 13:50:41 +00:00
reran and refined old tutorials
This commit is contained in:
4
.gitignore
vendored
4
.gitignore
vendored
@@ -1,4 +1,6 @@
|
||||
.idea/
|
||||
ML/Pytorch/more_advanced/image_captioning/flickr8k/
|
||||
ML/algorithms/svm/__pycache__/utils.cpython-38.pyc
|
||||
__pycache__/
|
||||
__pycache__/
|
||||
*.pth.tar
|
||||
*.DS_STORE
|
||||
|
||||
@@ -1,131 +0,0 @@
|
||||
# Imports
|
||||
import os
|
||||
from typing import Union
|
||||
|
||||
import torch.nn.functional as F # All functions that don't have any parameters
|
||||
import pandas as pd
|
||||
import torch
|
||||
import torch.nn as nn # All neural network modules, nn.Linear, nn.Conv2d, BatchNorm, Loss functions
|
||||
import torch.optim as optim # For all Optimization algorithms, SGD, Adam, etc.
|
||||
import torchvision
|
||||
import torchvision.transforms as transforms # Transformations we can perform on our dataset
|
||||
from pandas import io
|
||||
|
||||
# from skimage import io
|
||||
from torch.utils.data import (
|
||||
Dataset,
|
||||
DataLoader,
|
||||
) # Gives easier dataset managment and creates mini batches
|
||||
import torch.nn as nn # All neural network modules, nn.Linear, nn.Conv2d, BatchNorm, Loss functions
|
||||
|
||||
|
||||
# Create Fully Connected Network
|
||||
class NN(nn.Module):
|
||||
def __init__(self, input_size, num_classes):
|
||||
super(NN, self).__init__()
|
||||
self.fc1 = nn.Linear(input_size, 50)
|
||||
self.fc2 = nn.Linear(50, num_classes)
|
||||
|
||||
def forward(self, x):
|
||||
x = F.relu(self.fc1(x))
|
||||
x = self.fc2(x)
|
||||
return x
|
||||
|
||||
|
||||
class SoloDataset(Dataset):
|
||||
def __init__(self, csv_file, root_dir, transform=None):
|
||||
self.annotations = pd.read_csv(csv_file)
|
||||
self.root_dir = root_dir
|
||||
self.transform = transform
|
||||
|
||||
def __len__(self):
|
||||
return len(self.annotations)
|
||||
|
||||
def __getitem__(self, index):
|
||||
x_data = self.annotations.iloc[index, 0:11]
|
||||
x_data = torch.tensor(x_data)
|
||||
y_label = torch.tensor(int(self.annotations.iloc[index, 11]))
|
||||
|
||||
return (x_data.float(), y_label)
|
||||
|
||||
|
||||
# Set device
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
|
||||
# Hyperparameters
|
||||
num_classes = 26
|
||||
learning_rate = 1e-3
|
||||
batch_size = 5
|
||||
num_epochs = 30
|
||||
input_size = 11
|
||||
|
||||
# Load Data
|
||||
dataset = SoloDataset(
|
||||
csv_file="power.csv", root_dir="test123", transform=transforms.ToTensor()
|
||||
)
|
||||
train_set, test_set = torch.utils.data.random_split(dataset, [2900, 57])
|
||||
train_loader = DataLoader(dataset=train_set, batch_size=batch_size, shuffle=True)
|
||||
test_loader = DataLoader(dataset=test_set, batch_size=batch_size, shuffle=True)
|
||||
|
||||
# Model
|
||||
model = NN(input_size=input_size, num_classes=num_classes).to(device)
|
||||
|
||||
# Loss and optimizer
|
||||
criterion = nn.CrossEntropyLoss()
|
||||
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
|
||||
|
||||
print(len(train_set))
|
||||
print(len(test_set))
|
||||
# Train Network
|
||||
for epoch in range(num_epochs):
|
||||
losses = []
|
||||
|
||||
for batch_idx, (data, targets) in enumerate(train_loader):
|
||||
# Get data to cuda if possible
|
||||
data = data.to(device=device)
|
||||
targets = targets.to(device=device)
|
||||
|
||||
# forward
|
||||
scores = model(data)
|
||||
loss = criterion(scores, targets)
|
||||
|
||||
losses.append(loss.item())
|
||||
|
||||
# backward
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
|
||||
# gradient descent or adam step
|
||||
optimizer.step()
|
||||
|
||||
print(f"Cost at epoch {epoch} is {sum(losses) / len(losses)}")
|
||||
|
||||
|
||||
# Check accuracy on training to see how good our model is
|
||||
def check_accuracy(loader, model):
|
||||
num_correct = 0
|
||||
num_samples = 0
|
||||
model.eval()
|
||||
|
||||
with torch.no_grad():
|
||||
for x, y in loader:
|
||||
x = x.to(device=device)
|
||||
y = y.to(device=device)
|
||||
|
||||
scores = model(x)
|
||||
_, predictions = scores.max(1)
|
||||
num_correct += (predictions == y).sum()
|
||||
num_samples += predictions.size(0)
|
||||
|
||||
print(
|
||||
f"Got {num_correct} / {num_samples} with accuracy {float(num_correct) / float(num_samples) * 100:.2f}"
|
||||
)
|
||||
|
||||
model.train()
|
||||
|
||||
|
||||
print("Checking accuracy on Training Set")
|
||||
check_accuracy(train_loader, model)
|
||||
|
||||
print("Checking accuracy on Test Set")
|
||||
check_accuracy(test_loader, model)
|
||||
@@ -6,7 +6,7 @@ label (0 for cat, 1 for dog).
|
||||
|
||||
Programmed by Aladdin Persson <aladdin.persson at hotmail dot com>
|
||||
* 2020-04-03 Initial coding
|
||||
|
||||
* 2022-12-19 Updated with better comments, improved code using PIL, and checked code still functions as intended.
|
||||
"""
|
||||
|
||||
# Imports
|
||||
@@ -17,7 +17,7 @@ import torchvision.transforms as transforms # Transformations we can perform on
|
||||
import torchvision
|
||||
import os
|
||||
import pandas as pd
|
||||
from skimage import io
|
||||
from PIL import Image
|
||||
from torch.utils.data import (
|
||||
Dataset,
|
||||
DataLoader,
|
||||
@@ -35,7 +35,7 @@ class CatsAndDogsDataset(Dataset):
|
||||
|
||||
def __getitem__(self, index):
|
||||
img_path = os.path.join(self.root_dir, self.annotations.iloc[index, 0])
|
||||
image = io.imread(img_path)
|
||||
image = Image.open(img_path)
|
||||
y_label = torch.tensor(int(self.annotations.iloc[index, 1]))
|
||||
|
||||
if self.transform:
|
||||
@@ -50,7 +50,7 @@ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
# Hyperparameters
|
||||
in_channel = 3
|
||||
num_classes = 2
|
||||
learning_rate = 1e-3
|
||||
learning_rate = 3e-4
|
||||
batch_size = 32
|
||||
num_epochs = 10
|
||||
|
||||
@@ -69,12 +69,19 @@ train_loader = DataLoader(dataset=train_set, batch_size=batch_size, shuffle=True
|
||||
test_loader = DataLoader(dataset=test_set, batch_size=batch_size, shuffle=True)
|
||||
|
||||
# Model
|
||||
model = torchvision.models.googlenet(pretrained=True)
|
||||
model = torchvision.models.googlenet(weights="DEFAULT")
|
||||
|
||||
# freeze all layers, change final linear layer with num_classes
|
||||
for param in model.parameters():
|
||||
param.requires_grad = False
|
||||
|
||||
# final layer is not frozen
|
||||
model.fc = nn.Linear(in_features=1024, out_features=num_classes)
|
||||
model.to(device)
|
||||
|
||||
# Loss and optimizer
|
||||
criterion = nn.CrossEntropyLoss()
|
||||
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
|
||||
optimizer = optim.Adam(model.parameters(), lr=learning_rate, weight_decay=1e-5)
|
||||
|
||||
# Train Network
|
||||
for epoch in range(num_epochs):
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -1,15 +1,17 @@
|
||||
"""
|
||||
Example code of a simple bidirectional LSTM on the MNIST dataset.
|
||||
Note that using RNNs on image data is not the best idea, but it is a
|
||||
good example to show how to use RNNs that still generalizes to other tasks.
|
||||
|
||||
Programmed by Aladdin Persson <aladdin.persson at hotmail dot com>
|
||||
* 2020-05-09 Initial coding
|
||||
* 2022-12-16 Updated with more detailed comments, docstrings to functions, and checked code still functions as intended.
|
||||
|
||||
"""
|
||||
|
||||
|
||||
# Imports
|
||||
import torch
|
||||
import torchvision
|
||||
import torch.nn as nn # All neural network modules, nn.Linear, nn.Conv2d, BatchNorm, Loss functions
|
||||
import torch.optim as optim # For all Optimization algorithms, SGD, Adam, etc.
|
||||
import torch.nn.functional as F # All functions that don't have any parameters
|
||||
@@ -18,9 +20,10 @@ from torch.utils.data import (
|
||||
) # Gives easier dataset managment and creates mini batches
|
||||
import torchvision.datasets as datasets # Has standard datasets we can import in a nice way
|
||||
import torchvision.transforms as transforms # Transformations we can perform on our dataset
|
||||
from tqdm import tqdm # progress bar
|
||||
|
||||
# Set device
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
|
||||
# Hyperparameters
|
||||
input_size = 28
|
||||
@@ -28,7 +31,7 @@ sequence_length = 28
|
||||
num_layers = 2
|
||||
hidden_size = 256
|
||||
num_classes = 10
|
||||
learning_rate = 0.001
|
||||
learning_rate = 3e-4
|
||||
batch_size = 64
|
||||
num_epochs = 2
|
||||
|
||||
@@ -47,7 +50,7 @@ class BRNN(nn.Module):
|
||||
h0 = torch.zeros(self.num_layers * 2, x.size(0), self.hidden_size).to(device)
|
||||
c0 = torch.zeros(self.num_layers * 2, x.size(0), self.hidden_size).to(device)
|
||||
|
||||
out, _ = self.lstm(x, (h0, c0))
|
||||
out, _ = self.lstm(x)
|
||||
out = self.fc(out[:, -1, :])
|
||||
|
||||
return out
|
||||
@@ -74,7 +77,7 @@ optimizer = optim.Adam(model.parameters(), lr=learning_rate)
|
||||
|
||||
# Train Network
|
||||
for epoch in range(num_epochs):
|
||||
for batch_idx, (data, targets) in enumerate(train_loader):
|
||||
for batch_idx, (data, targets) in enumerate(tqdm(train_loader)):
|
||||
# Get data to cuda if possible
|
||||
data = data.to(device=device).squeeze(1)
|
||||
targets = targets.to(device=device)
|
||||
@@ -90,9 +93,8 @@ for epoch in range(num_epochs):
|
||||
# gradient descent or adam step
|
||||
optimizer.step()
|
||||
|
||||
|
||||
# Check accuracy on training & test to see how good our model
|
||||
|
||||
|
||||
def check_accuracy(loader, model):
|
||||
if loader.dataset.train:
|
||||
print("Checking accuracy on training data")
|
||||
|
||||
@@ -1,12 +1,16 @@
|
||||
"""
|
||||
Example code of how to initialize weights for a simple CNN network.
|
||||
Usually this is not needed as default initialization is usually good,
|
||||
but sometimes it can be useful to initialize weights in a specific way.
|
||||
This way of doing it should generalize to other network types just make
|
||||
sure to specify and change the modules you wish to modify.
|
||||
|
||||
Video explanation: https://youtu.be/xWQ-p_o0Uik
|
||||
Got any questions leave a comment on youtube :)
|
||||
|
||||
Programmed by Aladdin Persson <aladdin.persson at hotmail dot com>
|
||||
* 2020-04-10 Initial coding
|
||||
|
||||
* 2022-12-16 Updated with more detailed comments, and checked code still functions as intended.
|
||||
"""
|
||||
|
||||
# Imports
|
||||
@@ -20,17 +24,17 @@ class CNN(nn.Module):
|
||||
self.conv1 = nn.Conv2d(
|
||||
in_channels=in_channels,
|
||||
out_channels=6,
|
||||
kernel_size=(3, 3),
|
||||
stride=(1, 1),
|
||||
padding=(1, 1),
|
||||
kernel_size=3,
|
||||
stride=1,
|
||||
padding=1,
|
||||
)
|
||||
self.pool = nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2))
|
||||
self.conv2 = nn.Conv2d(
|
||||
in_channels=6,
|
||||
out_channels=16,
|
||||
kernel_size=(3, 3),
|
||||
stride=(1, 1),
|
||||
padding=(1, 1),
|
||||
kernel_size=3,
|
||||
stride=1,
|
||||
padding=1,
|
||||
)
|
||||
self.fc1 = nn.Linear(16 * 7 * 7, num_classes)
|
||||
self.initialize_weights()
|
||||
|
||||
@@ -9,7 +9,8 @@ Video explanation of code & how to save and load model: https://youtu.be/g6kQl_E
|
||||
Got any questions leave a comment on youtube :)
|
||||
|
||||
Coded by Aladdin Persson <aladdin dot person at hotmail dot com>
|
||||
- 2020-04-07 Initial programming
|
||||
* 2020-04-07 Initial programming
|
||||
* 2022-12-16 Updated with more detailed comments, and checked code still functions as intended.
|
||||
|
||||
"""
|
||||
|
||||
@@ -39,7 +40,9 @@ def load_checkpoint(checkpoint, model, optimizer):
|
||||
|
||||
def main():
|
||||
# Initialize network
|
||||
model = torchvision.models.vgg16(pretrained=False)
|
||||
model = torchvision.models.vgg16(
|
||||
weights=None
|
||||
) # pretrained=False deprecated, use weights instead
|
||||
optimizer = optim.Adam(model.parameters())
|
||||
|
||||
checkpoint = {"state_dict": model.state_dict(), "optimizer": optimizer.state_dict()}
|
||||
|
||||
@@ -3,22 +3,24 @@ Example code of a simple RNN, GRU, LSTM on the MNIST dataset.
|
||||
|
||||
Programmed by Aladdin Persson <aladdin.persson at hotmail dot com>
|
||||
* 2020-05-09 Initial coding
|
||||
* 2022-12-16 Updated with more detailed comments, docstrings to functions, and checked code still functions as intended.
|
||||
|
||||
"""
|
||||
|
||||
# Imports
|
||||
import torch
|
||||
import torchvision # torch package for vision related things
|
||||
import torch.nn.functional as F # Parameterless functions, like (some) activation functions
|
||||
import torchvision.datasets as datasets # Standard datasets
|
||||
import torchvision.transforms as transforms # Transformations we can perform on our dataset for augmentation
|
||||
from torch import optim # For optimizers like SGD, Adam, etc.
|
||||
from torch import nn # All neural network modules
|
||||
from torch.utils.data import DataLoader # Gives easier dataset managment by creating mini batches etc.
|
||||
from torch.utils.data import (
|
||||
DataLoader,
|
||||
) # Gives easier dataset managment by creating mini batches etc.
|
||||
from tqdm import tqdm # For a nice progress bar!
|
||||
|
||||
# Set device
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
|
||||
# Hyperparameters
|
||||
input_size = 28
|
||||
@@ -100,8 +102,12 @@ class RNN_LSTM(nn.Module):
|
||||
|
||||
|
||||
# Load Data
|
||||
train_dataset = datasets.MNIST(root="dataset/", train=True, transform=transforms.ToTensor(), download=True)
|
||||
test_dataset = datasets.MNIST(root="dataset/", train=False, transform=transforms.ToTensor(), download=True)
|
||||
train_dataset = datasets.MNIST(
|
||||
root="dataset/", train=True, transform=transforms.ToTensor(), download=True
|
||||
)
|
||||
test_dataset = datasets.MNIST(
|
||||
root="dataset/", train=False, transform=transforms.ToTensor(), download=True
|
||||
)
|
||||
train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
|
||||
test_loader = DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=True)
|
||||
|
||||
|
||||
@@ -173,10 +173,3 @@ def test():
|
||||
print(model(x).shape) # (num_examples, num_classes)
|
||||
|
||||
test()
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user