Files
Machine-Learning-Collection/ML/Pytorch/Basics/custom_dataset/custom_dataset.py
2022-12-19 15:57:59 +01:00

138 lines
4.0 KiB
Python

"""
Example of how to create custom dataset in Pytorch. In this case
we have images of cats and dogs in a separate folder and a csv
file containing the name to the jpg file as well as the target
label (0 for cat, 1 for dog).
Programmed by Aladdin Persson <aladdin.persson at hotmail dot com>
* 2020-04-03 Initial coding
* 2022-12-19 Updated with better comments, improved code using PIL, and checked code still functions as intended.
"""
# Imports
import torch
import torch.nn as nn # All neural network modules, nn.Linear, nn.Conv2d, BatchNorm, Loss functions
import torch.optim as optim # For all Optimization algorithms, SGD, Adam, etc.
import torchvision.transforms as transforms # Transformations we can perform on our dataset
import torchvision
import os
import pandas as pd
from PIL import Image
from torch.utils.data import (
Dataset,
DataLoader,
) # Gives easier dataset managment and creates mini batches
class CatsAndDogsDataset(Dataset):
def __init__(self, csv_file, root_dir, transform=None):
self.annotations = pd.read_csv(csv_file)
self.root_dir = root_dir
self.transform = transform
def __len__(self):
return len(self.annotations)
def __getitem__(self, index):
img_path = os.path.join(self.root_dir, self.annotations.iloc[index, 0])
image = Image.open(img_path)
y_label = torch.tensor(int(self.annotations.iloc[index, 1]))
if self.transform:
image = self.transform(image)
return (image, y_label)
# Set device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Hyperparameters
in_channel = 3
num_classes = 2
learning_rate = 3e-4
batch_size = 32
num_epochs = 10
# Load Data
dataset = CatsAndDogsDataset(
csv_file="cats_dogs.csv",
root_dir="cats_dogs_resized",
transform=transforms.ToTensor(),
)
# Dataset is actually a lot larger ~25k images, just took out 10 pictures
# to upload to Github. It's enough to understand the structure and scale
# if you got more images.
train_set, test_set = torch.utils.data.random_split(dataset, [5, 5])
train_loader = DataLoader(dataset=train_set, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(dataset=test_set, batch_size=batch_size, shuffle=True)
# Model
model = torchvision.models.googlenet(weights="DEFAULT")
# freeze all layers, change final linear layer with num_classes
for param in model.parameters():
param.requires_grad = False
# final layer is not frozen
model.fc = nn.Linear(in_features=1024, out_features=num_classes)
model.to(device)
# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate, weight_decay=1e-5)
# Train Network
for epoch in range(num_epochs):
losses = []
for batch_idx, (data, targets) in enumerate(train_loader):
# Get data to cuda if possible
data = data.to(device=device)
targets = targets.to(device=device)
# forward
scores = model(data)
loss = criterion(scores, targets)
losses.append(loss.item())
# backward
optimizer.zero_grad()
loss.backward()
# gradient descent or adam step
optimizer.step()
print(f"Cost at epoch {epoch} is {sum(losses)/len(losses)}")
# Check accuracy on training to see how good our model is
def check_accuracy(loader, model):
num_correct = 0
num_samples = 0
model.eval()
with torch.no_grad():
for x, y in loader:
x = x.to(device=device)
y = y.to(device=device)
scores = model(x)
_, predictions = scores.max(1)
num_correct += (predictions == y).sum()
num_samples += predictions.size(0)
print(
f"Got {num_correct} / {num_samples} with accuracy {float(num_correct)/float(num_samples)*100:.2f}"
)
model.train()
print("Checking accuracy on Training Set")
check_accuracy(train_loader, model)
print("Checking accuracy on Test Set")
check_accuracy(test_loader, model)