mirror of
https://github.com/aladdinpersson/Machine-Learning-Collection.git
synced 2026-02-20 13:50:41 +00:00
132 lines
3.6 KiB
Python
132 lines
3.6 KiB
Python
# Imports
|
|
import os
|
|
from typing import Union
|
|
|
|
import torch.nn.functional as F # All functions that don't have any parameters
|
|
import pandas as pd
|
|
import torch
|
|
import torch.nn as nn # All neural network modules, nn.Linear, nn.Conv2d, BatchNorm, Loss functions
|
|
import torch.optim as optim # For all Optimization algorithms, SGD, Adam, etc.
|
|
import torchvision
|
|
import torchvision.transforms as transforms # Transformations we can perform on our dataset
|
|
from pandas import io
|
|
|
|
# from skimage import io
|
|
from torch.utils.data import (
|
|
Dataset,
|
|
DataLoader,
|
|
) # Gives easier dataset managment and creates mini batches
|
|
import torch.nn as nn # All neural network modules, nn.Linear, nn.Conv2d, BatchNorm, Loss functions
|
|
|
|
|
|
# Create Fully Connected Network
|
|
class NN(nn.Module):
|
|
def __init__(self, input_size, num_classes):
|
|
super(NN, self).__init__()
|
|
self.fc1 = nn.Linear(input_size, 50)
|
|
self.fc2 = nn.Linear(50, num_classes)
|
|
|
|
def forward(self, x):
|
|
x = F.relu(self.fc1(x))
|
|
x = self.fc2(x)
|
|
return x
|
|
|
|
|
|
class SoloDataset(Dataset):
|
|
def __init__(self, csv_file, root_dir, transform=None):
|
|
self.annotations = pd.read_csv(csv_file)
|
|
self.root_dir = root_dir
|
|
self.transform = transform
|
|
|
|
def __len__(self):
|
|
return len(self.annotations)
|
|
|
|
def __getitem__(self, index):
|
|
x_data = self.annotations.iloc[index, 0:11]
|
|
x_data = torch.tensor(x_data)
|
|
y_label = torch.tensor(int(self.annotations.iloc[index, 11]))
|
|
|
|
return (x_data.float(), y_label)
|
|
|
|
|
|
# Set device
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
# Hyperparameters
|
|
num_classes = 26
|
|
learning_rate = 1e-3
|
|
batch_size = 5
|
|
num_epochs = 30
|
|
input_size = 11
|
|
|
|
# Load Data
|
|
dataset = SoloDataset(
|
|
csv_file="power.csv", root_dir="test123", transform=transforms.ToTensor()
|
|
)
|
|
train_set, test_set = torch.utils.data.random_split(dataset, [2900, 57])
|
|
train_loader = DataLoader(dataset=train_set, batch_size=batch_size, shuffle=True)
|
|
test_loader = DataLoader(dataset=test_set, batch_size=batch_size, shuffle=True)
|
|
|
|
# Model
|
|
model = NN(input_size=input_size, num_classes=num_classes).to(device)
|
|
|
|
# Loss and optimizer
|
|
criterion = nn.CrossEntropyLoss()
|
|
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
|
|
|
|
print(len(train_set))
|
|
print(len(test_set))
|
|
# Train Network
|
|
for epoch in range(num_epochs):
|
|
losses = []
|
|
|
|
for batch_idx, (data, targets) in enumerate(train_loader):
|
|
# Get data to cuda if possible
|
|
data = data.to(device=device)
|
|
targets = targets.to(device=device)
|
|
|
|
# forward
|
|
scores = model(data)
|
|
loss = criterion(scores, targets)
|
|
|
|
losses.append(loss.item())
|
|
|
|
# backward
|
|
optimizer.zero_grad()
|
|
loss.backward()
|
|
|
|
# gradient descent or adam step
|
|
optimizer.step()
|
|
|
|
print(f"Cost at epoch {epoch} is {sum(losses) / len(losses)}")
|
|
|
|
|
|
# Check accuracy on training to see how good our model is
|
|
def check_accuracy(loader, model):
|
|
num_correct = 0
|
|
num_samples = 0
|
|
model.eval()
|
|
|
|
with torch.no_grad():
|
|
for x, y in loader:
|
|
x = x.to(device=device)
|
|
y = y.to(device=device)
|
|
|
|
scores = model(x)
|
|
_, predictions = scores.max(1)
|
|
num_correct += (predictions == y).sum()
|
|
num_samples += predictions.size(0)
|
|
|
|
print(
|
|
f"Got {num_correct} / {num_samples} with accuracy {float(num_correct) / float(num_samples) * 100:.2f}"
|
|
)
|
|
|
|
model.train()
|
|
|
|
|
|
print("Checking accuracy on Training Set")
|
|
check_accuracy(train_loader, model)
|
|
|
|
print("Checking accuracy on Test Set")
|
|
check_accuracy(test_loader, model)
|