Files
Machine-Learning-Collection/ML/Pytorch/Basics/custom_dataset/custom_FCNN.py

132 lines
3.6 KiB
Python
Raw Normal View History

2021-01-30 21:49:15 +01:00
# Imports
import os
from typing import Union
import torch.nn.functional as F # All functions that don't have any parameters
import pandas as pd
import torch
import torch.nn as nn # All neural network modules, nn.Linear, nn.Conv2d, BatchNorm, Loss functions
import torch.optim as optim # For all Optimization algorithms, SGD, Adam, etc.
import torchvision
import torchvision.transforms as transforms # Transformations we can perform on our dataset
from pandas import io
# from skimage import io
from torch.utils.data import (
Dataset,
DataLoader,
) # Gives easier dataset managment and creates mini batches
import torch.nn as nn # All neural network modules, nn.Linear, nn.Conv2d, BatchNorm, Loss functions
# Create Fully Connected Network
class NN(nn.Module):
def __init__(self, input_size, num_classes):
super(NN, self).__init__()
self.fc1 = nn.Linear(input_size, 50)
self.fc2 = nn.Linear(50, num_classes)
def forward(self, x):
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
class SoloDataset(Dataset):
def __init__(self, csv_file, root_dir, transform=None):
self.annotations = pd.read_csv(csv_file)
self.root_dir = root_dir
self.transform = transform
def __len__(self):
return len(self.annotations)
def __getitem__(self, index):
x_data = self.annotations.iloc[index, 0:11]
x_data = torch.tensor(x_data)
y_label = torch.tensor(int(self.annotations.iloc[index, 11]))
return (x_data.float(), y_label)
# Set device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Hyperparameters
num_classes = 26
learning_rate = 1e-3
batch_size = 5
num_epochs = 30
input_size = 11
# Load Data
dataset = SoloDataset(
csv_file="power.csv", root_dir="test123", transform=transforms.ToTensor()
)
train_set, test_set = torch.utils.data.random_split(dataset, [2900, 57])
train_loader = DataLoader(dataset=train_set, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(dataset=test_set, batch_size=batch_size, shuffle=True)
# Model
model = NN(input_size=input_size, num_classes=num_classes).to(device)
# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
print(len(train_set))
print(len(test_set))
# Train Network
for epoch in range(num_epochs):
losses = []
for batch_idx, (data, targets) in enumerate(train_loader):
# Get data to cuda if possible
data = data.to(device=device)
targets = targets.to(device=device)
# forward
scores = model(data)
loss = criterion(scores, targets)
losses.append(loss.item())
# backward
optimizer.zero_grad()
loss.backward()
# gradient descent or adam step
optimizer.step()
print(f"Cost at epoch {epoch} is {sum(losses) / len(losses)}")
# Check accuracy on training to see how good our model is
def check_accuracy(loader, model):
num_correct = 0
num_samples = 0
model.eval()
with torch.no_grad():
for x, y in loader:
x = x.to(device=device)
y = y.to(device=device)
scores = model(x)
_, predictions = scores.max(1)
num_correct += (predictions == y).sum()
num_samples += predictions.size(0)
print(
f"Got {num_correct} / {num_samples} with accuracy {float(num_correct) / float(num_samples) * 100:.2f}"
)
model.train()
print("Checking accuracy on Training Set")
check_accuracy(train_loader, model)
print("Checking accuracy on Test Set")
check_accuracy(test_loader, model)