Files
Machine-Learning-Collection/ML/Pytorch/GANs/CycleGAN/generator_model.py
Aladdin Persson c646ef65e2 checked GAN code
2022-12-21 14:03:08 +01:00

124 lines
3.4 KiB
Python

"""
Generator model for CycleGAN
Programmed by Aladdin Persson <aladdin.persson at hotmail dot com>
* 2020-11-05: Initial coding
* 2022-12-21: Small revision of code, checked that it works with latest PyTorch version
"""
import torch
import torch.nn as nn
class ConvBlock(nn.Module):
def __init__(self, in_channels, out_channels, down=True, use_act=True, **kwargs):
super().__init__()
self.conv = nn.Sequential(
nn.Conv2d(in_channels, out_channels, padding_mode="reflect", **kwargs)
if down
else nn.ConvTranspose2d(in_channels, out_channels, **kwargs),
nn.InstanceNorm2d(out_channels),
nn.ReLU(inplace=True) if use_act else nn.Identity(),
)
def forward(self, x):
return self.conv(x)
class ResidualBlock(nn.Module):
def __init__(self, channels):
super().__init__()
self.block = nn.Sequential(
ConvBlock(channels, channels, kernel_size=3, padding=1),
ConvBlock(channels, channels, use_act=False, kernel_size=3, padding=1),
)
def forward(self, x):
return x + self.block(x)
class Generator(nn.Module):
def __init__(self, img_channels, num_features=64, num_residuals=9):
super().__init__()
self.initial = nn.Sequential(
nn.Conv2d(
img_channels,
num_features,
kernel_size=7,
stride=1,
padding=3,
padding_mode="reflect",
),
nn.InstanceNorm2d(num_features),
nn.ReLU(inplace=True),
)
self.down_blocks = nn.ModuleList(
[
ConvBlock(
num_features, num_features * 2, kernel_size=3, stride=2, padding=1
),
ConvBlock(
num_features * 2,
num_features * 4,
kernel_size=3,
stride=2,
padding=1,
),
]
)
self.res_blocks = nn.Sequential(
*[ResidualBlock(num_features * 4) for _ in range(num_residuals)]
)
self.up_blocks = nn.ModuleList(
[
ConvBlock(
num_features * 4,
num_features * 2,
down=False,
kernel_size=3,
stride=2,
padding=1,
output_padding=1,
),
ConvBlock(
num_features * 2,
num_features * 1,
down=False,
kernel_size=3,
stride=2,
padding=1,
output_padding=1,
),
]
)
self.last = nn.Conv2d(
num_features * 1,
img_channels,
kernel_size=7,
stride=1,
padding=3,
padding_mode="reflect",
)
def forward(self, x):
x = self.initial(x)
for layer in self.down_blocks:
x = layer(x)
x = self.res_blocks(x)
for layer in self.up_blocks:
x = layer(x)
return torch.tanh(self.last(x))
def test():
img_channels = 3
img_size = 256
x = torch.randn((2, img_channels, img_size, img_size))
gen = Generator(img_channels, 9)
print(gen(x).shape)
if __name__ == "__main__":
test()