""" Generator model for CycleGAN Programmed by Aladdin Persson * 2020-11-05: Initial coding * 2022-12-21: Small revision of code, checked that it works with latest PyTorch version """ import torch import torch.nn as nn class ConvBlock(nn.Module): def __init__(self, in_channels, out_channels, down=True, use_act=True, **kwargs): super().__init__() self.conv = nn.Sequential( nn.Conv2d(in_channels, out_channels, padding_mode="reflect", **kwargs) if down else nn.ConvTranspose2d(in_channels, out_channels, **kwargs), nn.InstanceNorm2d(out_channels), nn.ReLU(inplace=True) if use_act else nn.Identity(), ) def forward(self, x): return self.conv(x) class ResidualBlock(nn.Module): def __init__(self, channels): super().__init__() self.block = nn.Sequential( ConvBlock(channels, channels, kernel_size=3, padding=1), ConvBlock(channels, channels, use_act=False, kernel_size=3, padding=1), ) def forward(self, x): return x + self.block(x) class Generator(nn.Module): def __init__(self, img_channels, num_features=64, num_residuals=9): super().__init__() self.initial = nn.Sequential( nn.Conv2d( img_channels, num_features, kernel_size=7, stride=1, padding=3, padding_mode="reflect", ), nn.InstanceNorm2d(num_features), nn.ReLU(inplace=True), ) self.down_blocks = nn.ModuleList( [ ConvBlock( num_features, num_features * 2, kernel_size=3, stride=2, padding=1 ), ConvBlock( num_features * 2, num_features * 4, kernel_size=3, stride=2, padding=1, ), ] ) self.res_blocks = nn.Sequential( *[ResidualBlock(num_features * 4) for _ in range(num_residuals)] ) self.up_blocks = nn.ModuleList( [ ConvBlock( num_features * 4, num_features * 2, down=False, kernel_size=3, stride=2, padding=1, output_padding=1, ), ConvBlock( num_features * 2, num_features * 1, down=False, kernel_size=3, stride=2, padding=1, output_padding=1, ), ] ) self.last = nn.Conv2d( num_features * 1, img_channels, kernel_size=7, stride=1, padding=3, padding_mode="reflect", ) def forward(self, x): x = self.initial(x) for layer in self.down_blocks: x = layer(x) x = self.res_blocks(x) for layer in self.up_blocks: x = layer(x) return torch.tanh(self.last(x)) def test(): img_channels = 3 img_size = 256 x = torch.randn((2, img_channels, img_size, img_size)) gen = Generator(img_channels, 9) print(gen(x).shape) if __name__ == "__main__": test()