mirror of
https://github.com/aladdinpersson/Machine-Learning-Collection.git
synced 2026-02-21 11:18:01 +00:00
55 lines
1.9 KiB
Python
55 lines
1.9 KiB
Python
import torch
|
|
import torchvision
|
|
import torch.nn as nn
|
|
|
|
# Print losses occasionally and print to tensorboard
|
|
def plot_to_tensorboard(
|
|
writer, loss_critic, loss_gen, real, fake, tensorboard_step
|
|
):
|
|
writer.add_scalar("Loss Critic", loss_critic, global_step=tensorboard_step)
|
|
|
|
with torch.no_grad():
|
|
# take out (up to) 32 examples
|
|
img_grid_real = torchvision.utils.make_grid(real[:8], normalize=True)
|
|
img_grid_fake = torchvision.utils.make_grid(fake[:8], normalize=True)
|
|
writer.add_image("Real", img_grid_real, global_step=tensorboard_step)
|
|
writer.add_image("Fake", img_grid_fake, global_step=tensorboard_step)
|
|
|
|
|
|
def gradient_penalty(critic, real, fake, alpha, train_step, device="cpu"):
|
|
BATCH_SIZE, C, H, W = real.shape
|
|
beta = torch.rand((BATCH_SIZE, 1, 1, 1)).repeat(1, C, H, W).to(device)
|
|
interpolated_images = real * beta + fake * (1 - beta)
|
|
|
|
# Calculate critic scores
|
|
mixed_scores = critic(interpolated_images, alpha, train_step)
|
|
|
|
# Take the gradient of the scores with respect to the images
|
|
gradient = torch.autograd.grad(
|
|
inputs=interpolated_images,
|
|
outputs=mixed_scores,
|
|
grad_outputs=torch.ones_like(mixed_scores),
|
|
create_graph=True,
|
|
retain_graph=True,
|
|
)[0]
|
|
gradient = gradient.view(gradient.shape[0], -1)
|
|
gradient_norm = gradient.norm(2, dim=1)
|
|
gradient_penalty = torch.mean((gradient_norm - 1) ** 2)
|
|
return gradient_penalty
|
|
|
|
|
|
def save_checkpoint(state, filename="celeba_wgan_gp.pth.tar"):
|
|
print("=> Saving checkpoint")
|
|
torch.save(state, filename)
|
|
|
|
def load_checkpoint(checkpoint, gen, disc, opt_gen=None, opt_disc=None):
|
|
print("=> Loading checkpoint")
|
|
gen.load_state_dict(checkpoint['gen'])
|
|
disc.load_state_dict(checkpoint['critic'])
|
|
|
|
if opt_gen != None and opt_disc != None:
|
|
opt_gen.load_state_dict(checkpoint['opt_gen'])
|
|
opt_disc.load_state_dict(checkpoint['opt_critic'])
|
|
|
|
|