mirror of
https://github.com/aladdinpersson/Machine-Learning-Collection.git
synced 2026-02-21 11:18:01 +00:00
damn, copied over wrong train file for ProGAN (will check this more thoroughly before the video is up too
This commit is contained in:
@@ -1,38 +1,49 @@
|
||||
""" Training of ProGAN using WGAN-GP loss"""
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.optim as optim
|
||||
import torchvision
|
||||
import torchvision.datasets as datasets
|
||||
import torchvision.transforms as transforms
|
||||
from torch.utils.data import DataLoader
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
from utils import gradient_penalty, plot_to_tensorboard, save_checkpoint, load_checkpoint
|
||||
from utils import (
|
||||
gradient_penalty,
|
||||
plot_to_tensorboard,
|
||||
save_checkpoint,
|
||||
load_checkpoint,
|
||||
)
|
||||
from model import Discriminator, Generator
|
||||
from math import log2
|
||||
from tqdm import tqdm
|
||||
import time
|
||||
import config
|
||||
|
||||
torch.backends.cudnn.benchmarks = True
|
||||
|
||||
|
||||
def get_loader(image_size):
|
||||
transform = transforms.Compose(
|
||||
[
|
||||
transforms.Resize((image_size, image_size)),
|
||||
transforms.ToTensor(),
|
||||
transforms.RandomHorizontalFlip(p=0.5),
|
||||
transforms.Normalize(
|
||||
[0.5 for _ in range(config.CHANNELS_IMG)],
|
||||
[0.5 for _ in range(config.CHANNELS_IMG)],
|
||||
),
|
||||
]
|
||||
)
|
||||
batch_size = config.BATCH_SIZES[int(log2(image_size/4))]
|
||||
dataset = datasets.ImageFolder(root="celeb_dataset", transform=transform)
|
||||
loader = DataLoader(dataset, batch_size=batch_size, shuffle=True, num_workers=config.NUM_WORKERS, pin_memory=True)
|
||||
batch_size = config.BATCH_SIZES[int(log2(image_size / 4))]
|
||||
dataset = datasets.ImageFolder(root=config.DATASET, transform=transform)
|
||||
loader = DataLoader(
|
||||
dataset,
|
||||
batch_size=batch_size,
|
||||
shuffle=True,
|
||||
num_workers=config.NUM_WORKERS,
|
||||
pin_memory=True,
|
||||
)
|
||||
return loader, dataset
|
||||
|
||||
|
||||
def train_fn(
|
||||
critic,
|
||||
gen,
|
||||
@@ -47,91 +58,96 @@ def train_fn(
|
||||
scaler_gen,
|
||||
scaler_critic,
|
||||
):
|
||||
start = time.time()
|
||||
total_time = 0
|
||||
loop = tqdm(loader, leave=True)
|
||||
losses_critic = []
|
||||
|
||||
# critic_losses = []
|
||||
reals = 0
|
||||
fakes = 0
|
||||
for batch_idx, (real, _) in enumerate(loop):
|
||||
real = real.to(config.DEVICE)
|
||||
cur_batch_size = real.shape[0]
|
||||
model_start = time.time()
|
||||
|
||||
for _ in range(4):
|
||||
# Train Critic: max E[critic(real)] - E[critic(fake)]
|
||||
# which is equivalent to minimizing the negative of the expression
|
||||
for _ in range(config.CRITIC_ITERATIONS):
|
||||
noise = torch.randn(cur_batch_size, config.Z_DIM, 1, 1).to(config.DEVICE)
|
||||
# Train Critic: max E[critic(real)] - E[critic(fake)] <-> min -E[critic(real)] + E[critic(fake)]
|
||||
# which is equivalent to minimizing the negative of the expression
|
||||
noise = torch.randn(cur_batch_size, config.Z_DIM).to(config.DEVICE)
|
||||
|
||||
with torch.cuda.amp.autocast():
|
||||
fake = gen(noise, alpha, step)
|
||||
critic_real = critic(real, alpha, step).reshape(-1)
|
||||
critic_fake = critic(fake, alpha, step).reshape(-1)
|
||||
gp = gradient_penalty(critic, real, fake, alpha, step, device=config.DEVICE)
|
||||
loss_critic = (
|
||||
-(torch.mean(critic_real) - torch.mean(critic_fake))
|
||||
+ config.LAMBDA_GP * gp
|
||||
)
|
||||
with torch.cuda.amp.autocast():
|
||||
fake = gen(noise, alpha, step)
|
||||
critic_real = critic(real, alpha, step)
|
||||
critic_fake = critic(fake.detach(), alpha, step)
|
||||
reals += critic_real.mean().item()
|
||||
fakes += critic_fake.mean().item()
|
||||
gp = gradient_penalty(critic, real, fake, device=config.DEVICE)
|
||||
loss_critic = (
|
||||
-(torch.mean(critic_real) - torch.mean(critic_fake))
|
||||
+ config.LAMBDA_GP * gp
|
||||
+ (0.001 * torch.mean(critic_real ** 2))
|
||||
)
|
||||
|
||||
losses_critic.append(loss_critic.item())
|
||||
opt_critic.zero_grad()
|
||||
scaler_critic.scale(loss_critic).backward()
|
||||
scaler_critic.step(opt_critic)
|
||||
scaler_critic.update()
|
||||
#loss_critic.backward(retain_graph=True)
|
||||
#opt_critic.step()
|
||||
opt_critic.zero_grad()
|
||||
scaler_critic.scale(loss_critic).backward()
|
||||
scaler_critic.step(opt_critic)
|
||||
scaler_critic.update()
|
||||
|
||||
# Train Generator: max E[critic(gen_fake)] <-> min -E[critic(gen_fake)]
|
||||
with torch.cuda.amp.autocast():
|
||||
fake = gen(noise, alpha, step)
|
||||
gen_fake = critic(fake, alpha, step).reshape(-1)
|
||||
loss_gen = -torch.mean(gen_fake)
|
||||
# Train Generator: max E[critic(gen_fake)] <-> min -E[critic(gen_fake)]
|
||||
with torch.cuda.amp.autocast():
|
||||
gen_fake = critic(fake, alpha, step)
|
||||
loss_gen = -torch.mean(gen_fake)
|
||||
|
||||
opt_gen.zero_grad()
|
||||
scaler_gen.scale(loss_gen).backward()
|
||||
scaler_gen.step(opt_gen)
|
||||
scaler_gen.update()
|
||||
#gen.zero_grad()
|
||||
#loss_gen.backward()
|
||||
#opt_gen.step()
|
||||
opt_gen.zero_grad()
|
||||
scaler_gen.scale(loss_gen).backward()
|
||||
scaler_gen.step(opt_gen)
|
||||
scaler_gen.update()
|
||||
|
||||
# Update alpha and ensure less than 1
|
||||
alpha += cur_batch_size / (
|
||||
(config.PROGRESSIVE_EPOCHS[step]*0.5) * len(dataset) # - step
|
||||
(config.PROGRESSIVE_EPOCHS[step] * 0.5) * len(dataset)
|
||||
)
|
||||
alpha = min(alpha, 1)
|
||||
total_time += time.time()-model_start
|
||||
|
||||
if batch_idx % 10 == 0:
|
||||
print(alpha)
|
||||
if batch_idx % 500 == 0:
|
||||
with torch.no_grad():
|
||||
fixed_fakes = gen(config.FIXED_NOISE, alpha, step)
|
||||
fixed_fakes = gen(config.FIXED_NOISE, alpha, step) * 0.5 + 0.5
|
||||
plot_to_tensorboard(
|
||||
writer, loss_critic, loss_gen, real, fixed_fakes, tensorboard_step
|
||||
writer,
|
||||
loss_critic.item(),
|
||||
loss_gen.item(),
|
||||
real.detach(),
|
||||
fixed_fakes.detach(),
|
||||
tensorboard_step,
|
||||
)
|
||||
tensorboard_step += 1
|
||||
|
||||
mean_loss = sum(losses_critic) / len(losses_critic)
|
||||
loop.set_postfix(loss=mean_loss)
|
||||
loop.set_postfix(
|
||||
reals=reals / (batch_idx + 1),
|
||||
fakes=fakes / (batch_idx + 1),
|
||||
gp=gp.item(),
|
||||
loss_critic=loss_critic.item(),
|
||||
)
|
||||
|
||||
print(f'Fraction spent on model training: {total_time/(time.time()-start)}')
|
||||
return tensorboard_step, alpha
|
||||
|
||||
|
||||
def main():
|
||||
# initialize gen and disc, note: discriminator should be called critic,
|
||||
# according to WGAN paper (since it no longer outputs between [0, 1])
|
||||
gen = Generator(config.Z_DIM, config.IN_CHANNELS, img_size=config.IMAGE_SIZE, img_channels=config.CHANNELS_IMG).to(config.DEVICE)
|
||||
critic = Discriminator(config.IMAGE_SIZE, config.Z_DIM, config.IN_CHANNELS, img_channels=config.CHANNELS_IMG).to(config.DEVICE)
|
||||
# but really who cares..
|
||||
gen = Generator(
|
||||
config.Z_DIM, config.W_DIM, config.IN_CHANNELS, img_channels=config.CHANNELS_IMG
|
||||
).to(config.DEVICE)
|
||||
critic = Discriminator(
|
||||
config.IN_CHANNELS, img_channels=config.CHANNELS_IMG
|
||||
).to(config.DEVICE)
|
||||
|
||||
# initializate optimizer
|
||||
# initialize optimizers and scalers for FP16 training
|
||||
opt_gen = optim.Adam(gen.parameters(), lr=config.LEARNING_RATE, betas=(0.0, 0.99))
|
||||
opt_critic = optim.Adam(critic.parameters(), lr=config.LEARNING_RATE, betas=(0.0, 0.99))
|
||||
opt_critic = optim.Adam(
|
||||
critic.parameters(), lr=config.LEARNING_RATE, betas=(0.0, 0.99)
|
||||
)
|
||||
scaler_critic = torch.cuda.amp.GradScaler()
|
||||
scaler_gen = torch.cuda.amp.GradScaler()
|
||||
|
||||
# for tensorboard plotting
|
||||
writer = SummaryWriter(f"logs/gan")
|
||||
writer = SummaryWriter(f"logs/gan1")
|
||||
|
||||
if config.LOAD_MODEL:
|
||||
load_checkpoint(
|
||||
@@ -145,12 +161,13 @@ def main():
|
||||
critic.train()
|
||||
|
||||
tensorboard_step = 0
|
||||
step = int(log2(config.START_TRAIN_AT_IMG_SIZE/4))
|
||||
|
||||
# start at step that corresponds to img size that we set in config
|
||||
step = int(log2(config.START_TRAIN_AT_IMG_SIZE / 4))
|
||||
for num_epochs in config.PROGRESSIVE_EPOCHS[step:]:
|
||||
alpha = 0.01
|
||||
loader, dataset = get_loader(4 * 2 ** step) # 4->0, 8->1, 16->2, 32->3
|
||||
print(f"Current image size: {4*2**step}")
|
||||
alpha = 1e-5 # start with very low alpha
|
||||
loader, dataset = get_loader(4 * 2 ** step) # 4->0, 8->1, 16->2, 32->3, 64 -> 4
|
||||
print(f"Current image size: {4 * 2 ** step}")
|
||||
|
||||
for epoch in range(num_epochs):
|
||||
print(f"Epoch [{epoch+1}/{num_epochs}]")
|
||||
tensorboard_step, alpha = train_fn(
|
||||
@@ -172,7 +189,8 @@ def main():
|
||||
save_checkpoint(gen, opt_gen, filename=config.CHECKPOINT_GEN)
|
||||
save_checkpoint(critic, opt_critic, filename=config.CHECKPOINT_CRITIC)
|
||||
|
||||
step += 1
|
||||
step += 1 # progress to the next img size
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
Reference in New Issue
Block a user