mirror of
https://github.com/aladdinpersson/Machine-Learning-Collection.git
synced 2026-02-20 13:50:41 +00:00
updated and checked CNN architectures still works with latest pytorch
This commit is contained in:
@@ -1,12 +1,9 @@
|
||||
"""
|
||||
An implementation of LeNet CNN architecture.
|
||||
|
||||
Video explanation: https://youtu.be/fcOW-Zyb5Bo
|
||||
Got any questions leave a comment on youtube :)
|
||||
|
||||
Programmed by Aladdin Persson <aladdin.persson at hotmail dot com>
|
||||
* 2020-04-05 Initial coding
|
||||
|
||||
* 2022-12-20 Update comments, code revision, checked still works with latest PyTorch version
|
||||
"""
|
||||
|
||||
import torch
|
||||
@@ -17,27 +14,27 @@ class LeNet(nn.Module):
|
||||
def __init__(self):
|
||||
super(LeNet, self).__init__()
|
||||
self.relu = nn.ReLU()
|
||||
self.pool = nn.AvgPool2d(kernel_size=(2, 2), stride=(2, 2))
|
||||
self.pool = nn.AvgPool2d(kernel_size=2, stride=2)
|
||||
self.conv1 = nn.Conv2d(
|
||||
in_channels=1,
|
||||
out_channels=6,
|
||||
kernel_size=(5, 5),
|
||||
stride=(1, 1),
|
||||
padding=(0, 0),
|
||||
kernel_size=5,
|
||||
stride=1,
|
||||
padding=0,
|
||||
)
|
||||
self.conv2 = nn.Conv2d(
|
||||
in_channels=6,
|
||||
out_channels=16,
|
||||
kernel_size=(5, 5),
|
||||
stride=(1, 1),
|
||||
padding=(0, 0),
|
||||
kernel_size=5,
|
||||
stride=1,
|
||||
padding=0,
|
||||
)
|
||||
self.conv3 = nn.Conv2d(
|
||||
in_channels=16,
|
||||
out_channels=120,
|
||||
kernel_size=(5, 5),
|
||||
stride=(1, 1),
|
||||
padding=(0, 0),
|
||||
kernel_size=5,
|
||||
stride=1,
|
||||
padding=0,
|
||||
)
|
||||
self.linear1 = nn.Linear(120, 84)
|
||||
self.linear2 = nn.Linear(84, 10)
|
||||
@@ -64,4 +61,4 @@ def test_lenet():
|
||||
|
||||
if __name__ == "__main__":
|
||||
out = test_lenet()
|
||||
print(out.shape)
|
||||
print(out.shape)
|
||||
@@ -1,3 +1,12 @@
|
||||
"""
|
||||
An implementation of EfficientNet CNN architecture.
|
||||
|
||||
Programmed by Aladdin Persson <aladdin.persson at hotmail dot com>
|
||||
* 2021-02-05 Initial coding
|
||||
* 2022-12-20 Update comments, code revision, checked still works with latest PyTorch version
|
||||
"""
|
||||
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from math import ceil
|
||||
@@ -25,9 +34,10 @@ phi_values = {
|
||||
"b7": (6, 600, 0.5),
|
||||
}
|
||||
|
||||
|
||||
class CNNBlock(nn.Module):
|
||||
def __init__(
|
||||
self, in_channels, out_channels, kernel_size, stride, padding, groups=1
|
||||
self, in_channels, out_channels, kernel_size, stride, padding, groups=1
|
||||
):
|
||||
super(CNNBlock, self).__init__()
|
||||
self.cnn = nn.Conv2d(
|
||||
@@ -40,16 +50,17 @@ class CNNBlock(nn.Module):
|
||||
bias=False,
|
||||
)
|
||||
self.bn = nn.BatchNorm2d(out_channels)
|
||||
self.silu = nn.SiLU() # SiLU <-> Swish
|
||||
self.silu = nn.SiLU() # SiLU <-> Swish
|
||||
|
||||
def forward(self, x):
|
||||
return self.silu(self.bn(self.cnn(x)))
|
||||
|
||||
|
||||
class SqueezeExcitation(nn.Module):
|
||||
def __init__(self, in_channels, reduced_dim):
|
||||
super(SqueezeExcitation, self).__init__()
|
||||
self.se = nn.Sequential(
|
||||
nn.AdaptiveAvgPool2d(1), # C x H x W -> C x 1 x 1
|
||||
nn.AdaptiveAvgPool2d(1), # C x H x W -> C x 1 x 1
|
||||
nn.Conv2d(in_channels, reduced_dim, 1),
|
||||
nn.SiLU(),
|
||||
nn.Conv2d(reduced_dim, in_channels, 1),
|
||||
@@ -59,17 +70,18 @@ class SqueezeExcitation(nn.Module):
|
||||
def forward(self, x):
|
||||
return x * self.se(x)
|
||||
|
||||
|
||||
class InvertedResidualBlock(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
kernel_size,
|
||||
stride,
|
||||
padding,
|
||||
expand_ratio,
|
||||
reduction=4, # squeeze excitation
|
||||
survival_prob=0.8, # for stochastic depth
|
||||
self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
kernel_size,
|
||||
stride,
|
||||
padding,
|
||||
expand_ratio,
|
||||
reduction=4, # squeeze excitation
|
||||
survival_prob=0.8, # for stochastic depth
|
||||
):
|
||||
super(InvertedResidualBlock, self).__init__()
|
||||
self.survival_prob = 0.8
|
||||
@@ -80,12 +92,21 @@ class InvertedResidualBlock(nn.Module):
|
||||
|
||||
if self.expand:
|
||||
self.expand_conv = CNNBlock(
|
||||
in_channels, hidden_dim, kernel_size=3, stride=1, padding=1,
|
||||
in_channels,
|
||||
hidden_dim,
|
||||
kernel_size=3,
|
||||
stride=1,
|
||||
padding=1,
|
||||
)
|
||||
|
||||
self.conv = nn.Sequential(
|
||||
CNNBlock(
|
||||
hidden_dim, hidden_dim, kernel_size, stride, padding, groups=hidden_dim,
|
||||
hidden_dim,
|
||||
hidden_dim,
|
||||
kernel_size,
|
||||
stride,
|
||||
padding,
|
||||
groups=hidden_dim,
|
||||
),
|
||||
SqueezeExcitation(hidden_dim, reduced_dim),
|
||||
nn.Conv2d(hidden_dim, out_channels, 1, bias=False),
|
||||
@@ -96,7 +117,9 @@ class InvertedResidualBlock(nn.Module):
|
||||
if not self.training:
|
||||
return x
|
||||
|
||||
binary_tensor = torch.rand(x.shape[0], 1, 1, 1, device=x.device) < self.survival_prob
|
||||
binary_tensor = (
|
||||
torch.rand(x.shape[0], 1, 1, 1, device=x.device) < self.survival_prob
|
||||
)
|
||||
return torch.div(x, self.survival_prob) * binary_tensor
|
||||
|
||||
def forward(self, inputs):
|
||||
@@ -122,8 +145,8 @@ class EfficientNet(nn.Module):
|
||||
|
||||
def calculate_factors(self, version, alpha=1.2, beta=1.1):
|
||||
phi, res, drop_rate = phi_values[version]
|
||||
depth_factor = alpha ** phi
|
||||
width_factor = beta ** phi
|
||||
depth_factor = alpha**phi
|
||||
width_factor = beta**phi
|
||||
return width_factor, depth_factor, drop_rate
|
||||
|
||||
def create_features(self, width_factor, depth_factor, last_channels):
|
||||
@@ -132,7 +155,7 @@ class EfficientNet(nn.Module):
|
||||
in_channels = channels
|
||||
|
||||
for expand_ratio, channels, repeats, stride, kernel_size in base_model:
|
||||
out_channels = 4*ceil(int(channels*width_factor) / 4)
|
||||
out_channels = 4 * ceil(int(channels * width_factor) / 4)
|
||||
layers_repeats = ceil(repeats * depth_factor)
|
||||
|
||||
for layer in range(layers_repeats):
|
||||
@@ -141,9 +164,9 @@ class EfficientNet(nn.Module):
|
||||
in_channels,
|
||||
out_channels,
|
||||
expand_ratio=expand_ratio,
|
||||
stride = stride if layer == 0 else 1,
|
||||
stride=stride if layer == 0 else 1,
|
||||
kernel_size=kernel_size,
|
||||
padding=kernel_size//2, # if k=1:pad=0, k=3:pad=1, k=5:pad=2
|
||||
padding=kernel_size // 2, # if k=1:pad=0, k=3:pad=1, k=5:pad=2
|
||||
)
|
||||
)
|
||||
in_channels = out_channels
|
||||
@@ -170,6 +193,8 @@ def test():
|
||||
num_classes=num_classes,
|
||||
).to(device)
|
||||
|
||||
print(model(x).shape) # (num_examples, num_classes)
|
||||
print(model(x).shape) # (num_examples, num_classes)
|
||||
|
||||
test()
|
||||
|
||||
if __name__ == "__main__":
|
||||
test()
|
||||
|
||||
@@ -1,15 +1,11 @@
|
||||
"""
|
||||
An implementation of GoogLeNet / InceptionNet from scratch.
|
||||
|
||||
Video explanation: https://youtu.be/uQc4Fs7yx5I
|
||||
Got any questions leave a comment on youtube :)
|
||||
|
||||
Programmed by Aladdin Persson <aladdin.persson at hotmail dot com>
|
||||
* 2020-04-07 Initial coding
|
||||
|
||||
* 2022-12-20 Update comments, code revision, checked still works with latest PyTorch version
|
||||
"""
|
||||
|
||||
# Imports
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
@@ -25,9 +21,9 @@ class GoogLeNet(nn.Module):
|
||||
self.conv1 = conv_block(
|
||||
in_channels=3,
|
||||
out_channels=64,
|
||||
kernel_size=(7, 7),
|
||||
stride=(2, 2),
|
||||
padding=(3, 3),
|
||||
kernel_size=7,
|
||||
stride=2,
|
||||
padding=3,
|
||||
)
|
||||
|
||||
self.maxpool1 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
||||
@@ -37,7 +33,7 @@ class GoogLeNet(nn.Module):
|
||||
# In this order: in_channels, out_1x1, red_3x3, out_3x3, red_5x5, out_5x5, out_1x1pool
|
||||
self.inception3a = Inception_block(192, 64, 96, 128, 16, 32, 32)
|
||||
self.inception3b = Inception_block(256, 128, 128, 192, 32, 96, 64)
|
||||
self.maxpool3 = nn.MaxPool2d(kernel_size=(3, 3), stride=2, padding=1)
|
||||
self.maxpool3 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
||||
|
||||
self.inception4a = Inception_block(480, 192, 96, 208, 16, 48, 64)
|
||||
self.inception4b = Inception_block(512, 160, 112, 224, 24, 64, 64)
|
||||
@@ -63,7 +59,6 @@ class GoogLeNet(nn.Module):
|
||||
x = self.conv1(x)
|
||||
x = self.maxpool1(x)
|
||||
x = self.conv2(x)
|
||||
# x = self.conv3(x)
|
||||
x = self.maxpool2(x)
|
||||
|
||||
x = self.inception3a(x)
|
||||
@@ -104,21 +99,21 @@ class Inception_block(nn.Module):
|
||||
self, in_channels, out_1x1, red_3x3, out_3x3, red_5x5, out_5x5, out_1x1pool
|
||||
):
|
||||
super(Inception_block, self).__init__()
|
||||
self.branch1 = conv_block(in_channels, out_1x1, kernel_size=(1, 1))
|
||||
self.branch1 = conv_block(in_channels, out_1x1, kernel_size=1)
|
||||
|
||||
self.branch2 = nn.Sequential(
|
||||
conv_block(in_channels, red_3x3, kernel_size=(1, 1)),
|
||||
conv_block(red_3x3, out_3x3, kernel_size=(3, 3), padding=(1, 1)),
|
||||
conv_block(in_channels, red_3x3, kernel_size=1),
|
||||
conv_block(red_3x3, out_3x3, kernel_size=(3, 3), padding=1),
|
||||
)
|
||||
|
||||
self.branch3 = nn.Sequential(
|
||||
conv_block(in_channels, red_5x5, kernel_size=(1, 1)),
|
||||
conv_block(red_5x5, out_5x5, kernel_size=(5, 5), padding=(2, 2)),
|
||||
conv_block(in_channels, red_5x5, kernel_size=1),
|
||||
conv_block(red_5x5, out_5x5, kernel_size=5, padding=2),
|
||||
)
|
||||
|
||||
self.branch4 = nn.Sequential(
|
||||
nn.MaxPool2d(kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
|
||||
conv_block(in_channels, out_1x1pool, kernel_size=(1, 1)),
|
||||
nn.MaxPool2d(kernel_size=3, stride=1, padding=1),
|
||||
conv_block(in_channels, out_1x1pool, kernel_size=1),
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
@@ -144,7 +139,6 @@ class InceptionAux(nn.Module):
|
||||
x = self.relu(self.fc1(x))
|
||||
x = self.dropout(x)
|
||||
x = self.fc2(x)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
@@ -160,7 +154,8 @@ class conv_block(nn.Module):
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# N = 3 (Mini batch size)
|
||||
x = torch.randn(3, 3, 224, 224)
|
||||
BATCH_SIZE = 5
|
||||
x = torch.randn(BATCH_SIZE, 3, 224, 224)
|
||||
model = GoogLeNet(aux_logits=True, num_classes=1000)
|
||||
print(model(x)[2].shape)
|
||||
assert model(x)[2].shape == torch.Size([BATCH_SIZE, 1000])
|
||||
|
||||
@@ -5,11 +5,9 @@ The intuition for ResNet is simple and clear, but to code
|
||||
it didn't feel super clear at first, even when reading Pytorch own
|
||||
implementation.
|
||||
|
||||
Video explanation:
|
||||
Got any questions leave a comment on youtube :)
|
||||
|
||||
Programmed by Aladdin Persson <aladdin.persson at hotmail dot com>
|
||||
* 2020-04-12 Initial coding
|
||||
* 2022-12-20 Update comments, code revision, checked still works with latest PyTorch version
|
||||
"""
|
||||
|
||||
import torch
|
||||
@@ -20,10 +18,15 @@ class block(nn.Module):
|
||||
def __init__(
|
||||
self, in_channels, intermediate_channels, identity_downsample=None, stride=1
|
||||
):
|
||||
super(block, self).__init__()
|
||||
super().__init__()
|
||||
self.expansion = 4
|
||||
self.conv1 = nn.Conv2d(
|
||||
in_channels, intermediate_channels, kernel_size=1, stride=1, padding=0, bias=False
|
||||
in_channels,
|
||||
intermediate_channels,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0,
|
||||
bias=False,
|
||||
)
|
||||
self.bn1 = nn.BatchNorm2d(intermediate_channels)
|
||||
self.conv2 = nn.Conv2d(
|
||||
@@ -32,7 +35,7 @@ class block(nn.Module):
|
||||
kernel_size=3,
|
||||
stride=stride,
|
||||
padding=1,
|
||||
bias=False
|
||||
bias=False,
|
||||
)
|
||||
self.bn2 = nn.BatchNorm2d(intermediate_channels)
|
||||
self.conv3 = nn.Conv2d(
|
||||
@@ -41,7 +44,7 @@ class block(nn.Module):
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0,
|
||||
bias=False
|
||||
bias=False,
|
||||
)
|
||||
self.bn3 = nn.BatchNorm2d(intermediate_channels * self.expansion)
|
||||
self.relu = nn.ReLU()
|
||||
@@ -72,7 +75,9 @@ class ResNet(nn.Module):
|
||||
def __init__(self, block, layers, image_channels, num_classes):
|
||||
super(ResNet, self).__init__()
|
||||
self.in_channels = 64
|
||||
self.conv1 = nn.Conv2d(image_channels, 64, kernel_size=7, stride=2, padding=3, bias=False)
|
||||
self.conv1 = nn.Conv2d(
|
||||
image_channels, 64, kernel_size=7, stride=2, padding=3, bias=False
|
||||
)
|
||||
self.bn1 = nn.BatchNorm2d(64)
|
||||
self.relu = nn.ReLU()
|
||||
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
||||
@@ -124,7 +129,7 @@ class ResNet(nn.Module):
|
||||
intermediate_channels * 4,
|
||||
kernel_size=1,
|
||||
stride=stride,
|
||||
bias=False
|
||||
bias=False,
|
||||
),
|
||||
nn.BatchNorm2d(intermediate_channels * 4),
|
||||
)
|
||||
@@ -158,9 +163,13 @@ def ResNet152(img_channel=3, num_classes=1000):
|
||||
|
||||
|
||||
def test():
|
||||
net = ResNet101(img_channel=3, num_classes=1000)
|
||||
y = net(torch.randn(4, 3, 224, 224)).to("cuda")
|
||||
BATCH_SIZE = 4
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
net = ResNet101(img_channel=3, num_classes=1000).to(device)
|
||||
y = net(torch.randn(BATCH_SIZE, 3, 224, 224)).to(device)
|
||||
assert y.size() == torch.Size([BATCH_SIZE, 1000])
|
||||
print(y.size())
|
||||
|
||||
|
||||
test()
|
||||
if __name__ == "__main__":
|
||||
test()
|
||||
|
||||
@@ -1,12 +1,9 @@
|
||||
"""
|
||||
A from scratch implementation of the VGG architecture.
|
||||
|
||||
Video explanation: https://youtu.be/ACmuBbuXn20
|
||||
Got any questions leave a comment on youtube :)
|
||||
|
||||
Programmed by Aladdin Persson <aladdin.persson at hotmail dot com>
|
||||
* 2020-04-05 Initial coding
|
||||
|
||||
* 2022-12-20 Update comments, code revision, checked still works with latest PyTorch version
|
||||
"""
|
||||
|
||||
# Imports
|
||||
@@ -113,7 +110,7 @@ class VGG_net(nn.Module):
|
||||
if __name__ == "__main__":
|
||||
device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
model = VGG_net(in_channels=3, num_classes=1000).to(device)
|
||||
print(model)
|
||||
## N = 3 (Mini batch size)
|
||||
# x = torch.randn(3, 3, 224, 224).to(device)
|
||||
# print(model(x).shape)
|
||||
BATCH_SIZE = 3
|
||||
x = torch.randn(3, 3, 224, 224).to(device)
|
||||
assert model(x).shape == torch.Size([BATCH_SIZE, 1000])
|
||||
print(model(x).shape)
|
||||
|
||||
Reference in New Issue
Block a user