Files
Machine-Learning-Collection/ML/Pytorch/CNN_architectures/pytorch_vgg_implementation.py

117 lines
2.8 KiB
Python

"""
A from scratch implementation of the VGG architecture.
Programmed by Aladdin Persson <aladdin.persson at hotmail dot com>
* 2020-04-05 Initial coding
* 2022-12-20 Update comments, code revision, checked still works with latest PyTorch version
"""
# Imports
import torch
import torch.nn as nn # All neural network modules, nn.Linear, nn.Conv2d, BatchNorm, Loss functions
VGG_types = {
"VGG11": [64, "M", 128, "M", 256, 256, "M", 512, 512, "M", 512, 512, "M"],
"VGG13": [64, 64, "M", 128, 128, "M", 256, 256, "M", 512, 512, "M", 512, 512, "M"],
"VGG16": [
64,
64,
"M",
128,
128,
"M",
256,
256,
256,
"M",
512,
512,
512,
"M",
512,
512,
512,
"M",
],
"VGG19": [
64,
64,
"M",
128,
128,
"M",
256,
256,
256,
256,
"M",
512,
512,
512,
512,
"M",
512,
512,
512,
512,
"M",
],
}
class VGG_net(nn.Module):
def __init__(self, in_channels=3, num_classes=1000):
super(VGG_net, self).__init__()
self.in_channels = in_channels
self.conv_layers = self.create_conv_layers(VGG_types["VGG16"])
self.fcs = nn.Sequential(
nn.Linear(512 * 7 * 7, 4096),
nn.ReLU(),
nn.Dropout(p=0.5),
nn.Linear(4096, 4096),
nn.ReLU(),
nn.Dropout(p=0.5),
nn.Linear(4096, num_classes),
)
def forward(self, x):
x = self.conv_layers(x)
x = x.reshape(x.shape[0], -1)
x = self.fcs(x)
return x
def create_conv_layers(self, architecture):
layers = []
in_channels = self.in_channels
for x in architecture:
if type(x) == int:
out_channels = x
layers += [
nn.Conv2d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=(3, 3),
stride=(1, 1),
padding=(1, 1),
),
nn.BatchNorm2d(x),
nn.ReLU(),
]
in_channels = x
elif x == "M":
layers += [nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2))]
return nn.Sequential(*layers)
if __name__ == "__main__":
device = "cuda" if torch.cuda.is_available() else "cpu"
model = VGG_net(in_channels=3, num_classes=1000).to(device)
BATCH_SIZE = 3
x = torch.randn(3, 3, 224, 224).to(device)
assert model(x).shape == torch.Size([BATCH_SIZE, 1000])
print(model(x).shape)