mirror of
https://github.com/aladdinpersson/Machine-Learning-Collection.git
synced 2026-02-20 13:50:41 +00:00
test
This commit is contained in:
@@ -1,157 +0,0 @@
|
||||
"""
|
||||
Example code of a simple RNN, GRU, LSTM on the MNIST dataset.
|
||||
|
||||
Programmed by Aladdin Persson <aladdin.persson at hotmail dot com>
|
||||
* 2020-05-09 Initial coding
|
||||
|
||||
"""
|
||||
|
||||
# Imports
|
||||
import torch
|
||||
import torchvision # torch package for vision related things
|
||||
import torch.nn.functional as F # Parameterless functions, like (some) activation functions
|
||||
import torchvision.datasets as datasets # Standard datasets
|
||||
import torchvision.transforms as transforms # Transformations we can perform on our dataset for augmentation
|
||||
from torch import optim # For optimizers like SGD, Adam, etc.
|
||||
from torch import nn # All neural network modules
|
||||
from torch.utils.data import DataLoader # Gives easier dataset managment by creating mini batches etc.
|
||||
from tqdm import tqdm # For a nice progress bar!
|
||||
|
||||
# Set device
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
|
||||
# Hyperparameters
|
||||
input_size = 28
|
||||
hidden_size = 256
|
||||
num_layers = 2
|
||||
num_classes = 10
|
||||
sequence_length = 28
|
||||
learning_rate = 0.005
|
||||
batch_size = 64
|
||||
num_epochs = 3
|
||||
|
||||
# Recurrent neural network (many-to-one)
|
||||
class RNN(nn.Module):
|
||||
def __init__(self, input_size, hidden_size, num_layers, num_classes):
|
||||
super(RNN, self).__init__()
|
||||
self.hidden_size = hidden_size
|
||||
self.num_layers = num_layers
|
||||
self.rnn = nn.RNN(input_size, hidden_size, num_layers, batch_first=True)
|
||||
self.fc = nn.Linear(hidden_size * sequence_length, num_classes)
|
||||
|
||||
def forward(self, x):
|
||||
# Set initial hidden and cell states
|
||||
h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device)
|
||||
|
||||
# Forward propagate LSTM
|
||||
out, _ = self.rnn(x, h0)
|
||||
out = out.reshape(out.shape[0], -1)
|
||||
|
||||
# Decode the hidden state of the last time step
|
||||
out = self.fc(out)
|
||||
return out
|
||||
|
||||
|
||||
# Recurrent neural network with GRU (many-to-one)
|
||||
class RNN_GRU(nn.Module):
|
||||
def __init__(self, input_size, hidden_size, num_layers, num_classes):
|
||||
super(RNN_GRU, self).__init__()
|
||||
self.hidden_size = hidden_size
|
||||
self.num_layers = num_layers
|
||||
self.gru = nn.GRU(input_size, hidden_size, num_layers, batch_first=True)
|
||||
self.fc = nn.Linear(hidden_size * sequence_length, num_classes)
|
||||
|
||||
def forward(self, x):
|
||||
# Set initial hidden and cell states
|
||||
h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device)
|
||||
|
||||
# Forward propagate LSTM
|
||||
out, _ = self.gru(x, h0)
|
||||
out = out.reshape(out.shape[0], -1)
|
||||
|
||||
# Decode the hidden state of the last time step
|
||||
out = self.fc(out)
|
||||
return out
|
||||
|
||||
|
||||
# Recurrent neural network with LSTM (many-to-one)
|
||||
class RNN_LSTM(nn.Module):
|
||||
def __init__(self, input_size, hidden_size, num_layers, num_classes):
|
||||
super(RNN_LSTM, self).__init__()
|
||||
self.hidden_size = hidden_size
|
||||
self.num_layers = num_layers
|
||||
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)
|
||||
self.fc = nn.Linear(hidden_size * sequence_length, num_classes)
|
||||
|
||||
def forward(self, x):
|
||||
# Set initial hidden and cell states
|
||||
h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device)
|
||||
c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device)
|
||||
|
||||
# Forward propagate LSTM
|
||||
out, _ = self.lstm(
|
||||
x, (h0, c0)
|
||||
) # out: tensor of shape (batch_size, seq_length, hidden_size)
|
||||
out = out.reshape(out.shape[0], -1)
|
||||
|
||||
# Decode the hidden state of the last time step
|
||||
out = self.fc(out)
|
||||
return out
|
||||
|
||||
|
||||
# Load Data
|
||||
train_dataset = datasets.MNIST(root="dataset/", train=True, transform=transforms.ToTensor(), download=True)
|
||||
test_dataset = datasets.MNIST(root="dataset/", train=False, transform=transforms.ToTensor(), download=True)
|
||||
train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
|
||||
test_loader = DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=True)
|
||||
|
||||
# Initialize network (try out just using simple RNN, or GRU, and then compare with LSTM)
|
||||
model = RNN_LSTM(input_size, hidden_size, num_layers, num_classes).to(device)
|
||||
|
||||
# Loss and optimizer
|
||||
criterion = nn.CrossEntropyLoss()
|
||||
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
|
||||
|
||||
# Train Network
|
||||
for epoch in range(num_epochs):
|
||||
for batch_idx, (data, targets) in enumerate(tqdm(train_loader)):
|
||||
# Get data to cuda if possible
|
||||
data = data.to(device=device).squeeze(1)
|
||||
targets = targets.to(device=device)
|
||||
|
||||
# forward
|
||||
scores = model(data)
|
||||
loss = criterion(scores, targets)
|
||||
|
||||
# backward
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
|
||||
# gradient descent update step/adam step
|
||||
optimizer.step()
|
||||
|
||||
# Check accuracy on training & test to see how good our model
|
||||
def check_accuracy(loader, model):
|
||||
num_correct = 0
|
||||
num_samples = 0
|
||||
|
||||
# Set model to eval
|
||||
model.eval()
|
||||
|
||||
with torch.no_grad():
|
||||
for x, y in loader:
|
||||
x = x.to(device=device).squeeze(1)
|
||||
y = y.to(device=device)
|
||||
|
||||
scores = model(x)
|
||||
_, predictions = scores.max(1)
|
||||
num_correct += (predictions == y).sum()
|
||||
num_samples += predictions.size(0)
|
||||
|
||||
# Toggle model back to train
|
||||
model.train()
|
||||
return num_correct / num_samples
|
||||
|
||||
|
||||
print(f"Accuracy on training set: {check_accuracy(train_loader, model)*100:2f}")
|
||||
print(f"Accuracy on test set: {check_accuracy(test_loader, model)*100:.2f}")
|
||||
@@ -1,119 +0,0 @@
|
||||
"""
|
||||
A simple walkthrough of how to code a convolutional neural network (CNN)
|
||||
using the PyTorch library. For demonstration we train it on the very
|
||||
common MNIST dataset of handwritten digits. In this code we go through
|
||||
how to create the network as well as initialize a loss function, optimizer,
|
||||
check accuracy and more.
|
||||
|
||||
Programmed by Aladdin Persson
|
||||
* 2020-04-08: Initial coding
|
||||
* 2021-03-24: More detailed comments and small revision of the code
|
||||
|
||||
"""
|
||||
|
||||
# Imports
|
||||
import torch
|
||||
import torchvision # torch package for vision related things
|
||||
import torch.nn.functional as F # Parameterless functions, like (some) activation functions
|
||||
import torchvision.datasets as datasets # Standard datasets
|
||||
import torchvision.transforms as transforms # Transformations we can perform on our dataset for augmentation
|
||||
from torch import optim # For optimizers like SGD, Adam, etc.
|
||||
from torch import nn # All neural network modules
|
||||
from torch.utils.data import DataLoader # Gives easier dataset managment by creating mini batches etc.
|
||||
from tqdm import tqdm # For nice progress bar!
|
||||
|
||||
# Simple CNN
|
||||
class CNN(nn.Module):
|
||||
def __init__(self, in_channels=1, num_classes=10):
|
||||
super(CNN, self).__init__()
|
||||
self.conv1 = nn.Conv2d(
|
||||
in_channels=in_channels,
|
||||
out_channels=8,
|
||||
kernel_size=(3, 3),
|
||||
stride=(1, 1),
|
||||
padding=(1, 1),
|
||||
)
|
||||
self.pool = nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2))
|
||||
self.conv2 = nn.Conv2d(
|
||||
in_channels=8,
|
||||
out_channels=16,
|
||||
kernel_size=(3, 3),
|
||||
stride=(1, 1),
|
||||
padding=(1, 1),
|
||||
)
|
||||
self.fc1 = nn.Linear(16 * 7 * 7, num_classes)
|
||||
|
||||
def forward(self, x):
|
||||
x = F.relu(self.conv1(x))
|
||||
x = self.pool(x)
|
||||
x = F.relu(self.conv2(x))
|
||||
x = self.pool(x)
|
||||
x = x.reshape(x.shape[0], -1)
|
||||
x = self.fc1(x)
|
||||
return x
|
||||
|
||||
|
||||
# Set device
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
|
||||
# Hyperparameters
|
||||
in_channels = 1
|
||||
num_classes = 10
|
||||
learning_rate = 0.001
|
||||
batch_size = 64
|
||||
num_epochs = 3
|
||||
|
||||
# Load Data
|
||||
train_dataset = datasets.MNIST(root="dataset/", train=True, transform=transforms.ToTensor(), download=True)
|
||||
test_dataset = datasets.MNIST(root="dataset/", train=False, transform=transforms.ToTensor(), download=True)
|
||||
train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
|
||||
test_loader = DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=True)
|
||||
|
||||
# Initialize network
|
||||
model = CNN(in_channels=in_channels, num_classes=num_classes).to(device)
|
||||
|
||||
# Loss and optimizer
|
||||
criterion = nn.CrossEntropyLoss()
|
||||
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
|
||||
|
||||
# Train Network
|
||||
for epoch in range(num_epochs):
|
||||
for batch_idx, (data, targets) in enumerate(tqdm(train_loader)):
|
||||
# Get data to cuda if possible
|
||||
data = data.to(device=device)
|
||||
targets = targets.to(device=device)
|
||||
|
||||
# forward
|
||||
scores = model(data)
|
||||
loss = criterion(scores, targets)
|
||||
|
||||
# backward
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
|
||||
# gradient descent or adam step
|
||||
optimizer.step()
|
||||
|
||||
# Check accuracy on training & test to see how good our model
|
||||
def check_accuracy(loader, model):
|
||||
num_correct = 0
|
||||
num_samples = 0
|
||||
model.eval()
|
||||
|
||||
with torch.no_grad():
|
||||
for x, y in loader:
|
||||
x = x.to(device=device)
|
||||
y = y.to(device=device)
|
||||
|
||||
scores = model(x)
|
||||
_, predictions = scores.max(1)
|
||||
num_correct += (predictions == y).sum()
|
||||
num_samples += predictions.size(0)
|
||||
|
||||
|
||||
model.train()
|
||||
return num_correct/num_samples
|
||||
|
||||
|
||||
print(f"Accuracy on training set: {check_accuracy(train_loader, model)*100:.2f}")
|
||||
print(f"Accuracy on test set: {check_accuracy(test_loader, model)*100:.2f}")
|
||||
@@ -1,120 +0,0 @@
|
||||
"""
|
||||
A simple walkthrough of how to code a fully connected neural network
|
||||
using the PyTorch library. For demonstration we train it on the very
|
||||
common MNIST dataset of handwritten digits. In this code we go through
|
||||
how to create the network as well as initialize a loss function, optimizer,
|
||||
check accuracy and more.
|
||||
|
||||
Programmed by Aladdin Persson
|
||||
* 2020-04-08: Initial coding
|
||||
* 2021-03-24: Added more detailed comments also removed part of
|
||||
check_accuracy which would only work specifically on MNIST.
|
||||
|
||||
"""
|
||||
|
||||
# Imports
|
||||
import torch
|
||||
import torchvision # torch package for vision related things
|
||||
import torch.nn.functional as F # Parameterless functions, like (some) activation functions
|
||||
import torchvision.datasets as datasets # Standard datasets
|
||||
import torchvision.transforms as transforms # Transformations we can perform on our dataset for augmentation
|
||||
from torch import optim # For optimizers like SGD, Adam, etc.
|
||||
from torch import nn # All neural network modules
|
||||
from torch.utils.data import DataLoader # Gives easier dataset managment by creating mini batches etc.
|
||||
from tqdm import tqdm # For nice progress bar!
|
||||
|
||||
# Here we create our simple neural network. For more details here we are subclassing and
|
||||
# inheriting from nn.Module, this is the most general way to create your networks and
|
||||
# allows for more flexibility. I encourage you to also check out nn.Sequential which
|
||||
# would be easier to use in this scenario but I wanted to show you something that
|
||||
# "always" works.
|
||||
class NN(nn.Module):
|
||||
def __init__(self, input_size, num_classes):
|
||||
super(NN, self).__init__()
|
||||
# Our first linear layer take input_size, in this case 784 nodes to 50
|
||||
# and our second linear layer takes 50 to the num_classes we have, in
|
||||
# this case 10.
|
||||
self.fc1 = nn.Linear(input_size, 50)
|
||||
self.fc2 = nn.Linear(50, num_classes)
|
||||
|
||||
def forward(self, x):
|
||||
"""
|
||||
x here is the mnist images and we run it through fc1, fc2 that we created above.
|
||||
we also add a ReLU activation function in between and for that (since it has no parameters)
|
||||
I recommend using nn.functional (F)
|
||||
"""
|
||||
|
||||
x = F.relu(self.fc1(x))
|
||||
x = self.fc2(x)
|
||||
return x
|
||||
|
||||
|
||||
# Set device cuda for GPU if it's available otherwise run on the CPU
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
|
||||
# Hyperparameters of our neural network which depends on the dataset, and
|
||||
# also just experimenting to see what works well (learning rate for example).
|
||||
input_size = 784
|
||||
num_classes = 10
|
||||
learning_rate = 0.001
|
||||
batch_size = 64
|
||||
num_epochs = 3
|
||||
|
||||
# Load Training and Test data
|
||||
train_dataset = datasets.MNIST(root="dataset/", train=True, transform=transforms.ToTensor(), download=True)
|
||||
test_dataset = datasets.MNIST(root="dataset/", train=False, transform=transforms.ToTensor(), download=True)
|
||||
train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
|
||||
test_loader = DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=True)
|
||||
|
||||
# Initialize network
|
||||
model = NN(input_size=input_size, num_classes=num_classes).to(device)
|
||||
|
||||
# Loss and optimizer
|
||||
criterion = nn.CrossEntropyLoss()
|
||||
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
|
||||
|
||||
# Train Network
|
||||
for epoch in range(num_epochs):
|
||||
for batch_idx, (data, targets) in enumerate(tqdm(train_loader)):
|
||||
# Get data to cuda if possible
|
||||
data = data.to(device=device)
|
||||
targets = targets.to(device=device)
|
||||
|
||||
# Get to correct shape
|
||||
data = data.reshape(data.shape[0], -1)
|
||||
|
||||
# forward
|
||||
scores = model(data)
|
||||
loss = criterion(scores, targets)
|
||||
|
||||
# backward
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
|
||||
# gradient descent or adam step
|
||||
optimizer.step()
|
||||
|
||||
|
||||
# Check accuracy on training & test to see how good our model
|
||||
def check_accuracy(loader, model):
|
||||
num_correct = 0
|
||||
num_samples = 0
|
||||
model.eval()
|
||||
|
||||
with torch.no_grad():
|
||||
for x, y in loader:
|
||||
x = x.to(device=device)
|
||||
y = y.to(device=device)
|
||||
x = x.reshape(x.shape[0], -1)
|
||||
|
||||
scores = model(x)
|
||||
_, predictions = scores.max(1)
|
||||
num_correct += (predictions == y).sum()
|
||||
num_samples += predictions.size(0)
|
||||
|
||||
model.train()
|
||||
return num_correct/num_samples
|
||||
|
||||
|
||||
print(f"Accuracy on training set: {check_accuracy(train_loader, model)*100:.2f}")
|
||||
print(f"Accuracy on test set: {check_accuracy(test_loader, model)*100:.2f}")
|
||||
Reference in New Issue
Block a user