add lightning code, finetuning whisper, recommender system neural collaborative filtering

This commit is contained in:
Aladdin Persson
2023-02-21 16:25:42 +01:00
parent c646ef65e2
commit 94f6c024fe
51 changed files with 17977 additions and 25 deletions

View File

@@ -0,0 +1,110 @@
import torch
import torch.nn.functional as F
import torchvision.datasets as datasets
import torchvision.transforms as transforms
from torch import nn, optim
from torch.utils.data import DataLoader
from tqdm import tqdm
from torch.utils.data import random_split
class NN(nn.Module):
def __init__(self, input_size, num_classes):
super().__init__()
self.fc1 = nn.Linear(input_size, 50)
self.fc2 = nn.Linear(50, num_classes)
def forward(self, x):
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
# Set device cuda for GPU if it's available otherwise run on the CPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Hyperparameters
input_size = 784
num_classes = 10
learning_rate = 0.001
batch_size = 64
num_epochs = 3
# Load Data
entire_dataset = datasets.MNIST(
root="dataset/", train=True, transform=transforms.ToTensor(), download=True
)
train_ds, val_ds = random_split(entire_dataset, [50000, 10000])
test_ds = datasets.MNIST(
root="dataset/", train=False, transform=transforms.ToTensor(), download=True
)
train_loader = DataLoader(dataset=train_ds, batch_size=batch_size, shuffle=True)
val_loader = DataLoader(dataset=train_ds, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(dataset=test_ds, batch_size=batch_size, shuffle=False)
# Initialize network
model = NN(input_size=input_size, num_classes=num_classes).to(device)
# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
# Train Network
for epoch in range(num_epochs):
for batch_idx, (data, targets) in enumerate(tqdm(train_loader)):
# Get data to cuda if possible
data = data.to(device=device)
targets = targets.to(device=device)
# Get to correct shape
data = data.reshape(data.shape[0], -1)
# Forward
scores = model(data)
loss = criterion(scores, targets)
# Backward
optimizer.zero_grad()
loss.backward()
# Gradient descent or adam step
optimizer.step()
# Check accuracy on training & test to see how good our model
def check_accuracy(loader, model):
num_correct = 0
num_samples = 0
model.eval()
# We don't need to keep track of gradients here so we wrap it in torch.no_grad()
with torch.no_grad():
# Loop through the data
for x, y in loader:
# Move data to device
x = x.to(device=device)
y = y.to(device=device)
# Get to correct shape
x = x.reshape(x.shape[0], -1)
# Forward pass
scores = model(x)
_, predictions = scores.max(1)
# Check how many we got correct
num_correct += (predictions == y).sum()
# Keep track of number of samples
num_samples += predictions.size(0)
model.train()
return num_correct / num_samples
# Check accuracy on training & test to see how good our model
model.to(device)
print(f"Accuracy on training set: {check_accuracy(train_loader, model)*100:.2f}")
print(f"Accuracy on validation set: {check_accuracy(val_loader, model)*100:.2f}")
print(f"Accuracy on test set: {check_accuracy(test_loader, model)*100:.2f}")

View File

@@ -0,0 +1,12 @@
from pytorch_lightning.callbacks import EarlyStopping, Callback
class MyPrintingCallback(Callback):
def __init__(self):
super().__init__()
def on_train_start(self, trainer, pl_module):
print("Starting to train!")
def on_train_end(self, trainer, pl_module):
print("Training is done.")

View File

@@ -0,0 +1,15 @@
# Training hyperparameters
INPUT_SIZE = 784
NUM_CLASSES = 10
LEARNING_RATE = 0.001
BATCH_SIZE = 64
NUM_EPOCHS = 3
# Dataset
DATA_DIR = "dataset/"
NUM_WORKERS = 4
# Compute related
ACCELERATOR = "gpu"
DEVICES = [0, 1]
PRECISION = 16

View File

@@ -0,0 +1,64 @@
import torch
import torch.nn.functional as F
import torchvision.datasets as datasets
import torchvision.transforms as transforms
from torch import nn, optim
from torch.utils.data import DataLoader
from torch.utils.data import random_split
import pytorch_lightning as pl
from torchvision.transforms import RandomHorizontalFlip, RandomVerticalFlip
class MnistDataModule(pl.LightningDataModule):
def __init__(self, data_dir, batch_size, num_workers):
super().__init__()
self.data_dir = data_dir
self.batch_size = batch_size
self.num_workers = num_workers
def prepare_data(self):
datasets.MNIST(self.data_dir, train=True, download=True)
datasets.MNIST(self.data_dir, train=False, download=True)
def setup(self, stage):
entire_dataset = datasets.MNIST(
root=self.data_dir,
train=True,
transform=transforms.Compose([
transforms.RandomVerticalFlip(),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
]),
download=False,
)
self.train_ds, self.val_ds = random_split(entire_dataset, [50000, 10000])
self.test_ds = datasets.MNIST(
root=self.data_dir,
train=False,
transform=transforms.ToTensor(),
download=False,
)
def train_dataloader(self):
return DataLoader(
self.train_ds,
batch_size=self.batch_size,
num_workers=self.num_workers,
shuffle=True,
)
def val_dataloader(self):
return DataLoader(
self.val_ds,
batch_size=self.batch_size,
num_workers=self.num_workers,
shuffle=False,
)
def test_dataloader(self):
return DataLoader(
self.test_ds,
batch_size=self.batch_size,
num_workers=self.num_workers,
shuffle=False,
)

View File

@@ -0,0 +1,89 @@
import torch
import torch.nn.functional as F
import torchvision.datasets as datasets
import torchvision.transforms as transforms
from torch import nn, optim
from torch.utils.data import DataLoader
from tqdm import tqdm
import pytorch_lightning as pl
import torchmetrics
from torchmetrics import Metric
import torchvision
class NN(pl.LightningModule):
def __init__(self, input_size, learning_rate, num_classes):
super().__init__()
self.lr = learning_rate
self.fc1 = nn.Linear(input_size, 1_000_000)
self.fc2 = nn.Linear(1_000_000, num_classes)
self.loss_fn = nn.CrossEntropyLoss()
self.accuracy = torchmetrics.Accuracy(
task="multiclass", num_classes=num_classes
)
self.f1_score = torchmetrics.F1Score(task="multiclass", num_classes=num_classes)
def forward(self, x):
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
def training_step(self, batch, batch_idx):
x, y = batch
loss, scores, y = self._common_step(batch, batch_idx)
self.log_dict(
{
"train_loss": loss,
},
on_step=False,
on_epoch=True,
prog_bar=True,
)
if batch_idx % 100 == 0:
x = x[:8]
grid = torchvision.utils.make_grid(x.view(-1, 1, 28, 28))
self.logger.experiment.add_image("mnist_images", grid, self.global_step)
return {"loss": loss, "scores": scores, "y": y}
def training_epoch_end(self, outputs):
scores = torch.cat([x["scores"] for x in outputs])
y = torch.cat([x["y"] for x in outputs])
self.log_dict(
{
"train_acc": self.accuracy(scores, y),
"train_f1": self.f1_score(scores, y),
},
on_step=False,
on_epoch=True,
prog_bar=True,
)
def validation_step(self, batch, batch_idx):
loss, scores, y = self._common_step(batch, batch_idx)
self.log("val_loss", loss)
return loss
def test_step(self, batch, batch_idx):
loss, scores, y = self._common_step(batch, batch_idx)
self.log("test_loss", loss)
return loss
def _common_step(self, batch, batch_idx):
x, y = batch
x = x.reshape(x.size(0), -1)
scores = self.forward(x)
loss = self.loss_fn(scores, y)
return loss, scores, y
def predict_step(self, batch, batch_idx):
x, y = batch
x = x.reshape(x.size(0), -1)
scores = self.forward(x)
preds = torch.argmax(scores, dim=1)
return preds
def configure_optimizers(self):
return optim.Adam(self.parameters(), lr=self.lr)

View File

@@ -0,0 +1,43 @@
import torch
import pytorch_lightning as pl
from model import NN
from dataset import MnistDataModule
import config
from callbacks import MyPrintingCallback, EarlyStopping
from pytorch_lightning.loggers import TensorBoardLogger
from pytorch_lightning.profilers import PyTorchProfiler
from pytorch_lightning.strategies import DeepSpeedStrategy
torch.set_float32_matmul_precision("medium") # to make lightning happy
if __name__ == "__main__":
logger = TensorBoardLogger("tb_logs", name="mnist_model_v1")
strategy = DeepSpeedStrategy()
profiler = PyTorchProfiler(
on_trace_ready=torch.profiler.tensorboard_trace_handler("tb_logs/profiler0"),
schedule=torch.profiler.schedule(skip_first=10, wait=1, warmup=1, active=20),
)
model = NN(
input_size=config.INPUT_SIZE,
learning_rate=config.LEARNING_RATE,
num_classes=config.NUM_CLASSES,
)
dm = MnistDataModule(
data_dir=config.DATA_DIR,
batch_size=config.BATCH_SIZE,
num_workers=config.NUM_WORKERS,
)
trainer = pl.Trainer(
strategy=strategy,
profiler=profiler,
logger=logger,
accelerator=config.ACCELERATOR,
devices=config.DEVICES,
min_epochs=1,
max_epochs=config.NUM_EPOCHS,
precision=config.PRECISION,
callbacks=[MyPrintingCallback(), EarlyStopping(monitor="val_loss")],
)
trainer.fit(model, dm)
trainer.validate(model, dm)
trainer.test(model, dm)

View File

@@ -0,0 +1,154 @@
import torch
import torch.nn.functional as F
import torchvision.datasets as datasets
import torchvision.transforms as transforms
from torch import nn, optim
from torch.utils.data import DataLoader
from tqdm import tqdm
from torch.utils.data import random_split
import pytorch_lightning as pl
class NN(nn.Module):
def __init__(self, input_size, num_classes):
super().__init__()
self.fc1 = nn.Linear(input_size, 50)
self.fc2 = nn.Linear(50, num_classes)
def forward(self, x):
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
class NN(pl.LightningModule):
def __init__(self, input_size, num_classes):
super().__init__()
self.fc1 = nn.Linear(input_size, 50)
self.fc2 = nn.Linear(50, num_classes)
self.loss_fn = nn.CrossEntropyLoss()
def forward(self, x):
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
def training_step(self, batch, batch_idx):
loss, scores, y = self._common_step(batch, batch_idx)
self.log('train_loss', loss)
return loss
def validation_step(self, batch, batch_idx):
loss, scores, y = self._common_step(batch, batch_idx)
self.log('val_loss', loss)
return loss
def test_step(self, batch, batch_idx):
loss, scores, y = self._common_step(batch, batch_idx)
self.log('test_loss', loss)
return loss
def _common_step(self, batch, batch_idx):
x, y = batch
x = x.reshape(x.size(0), -1)
scores = self.forward(x)
loss = self.loss_fn(scores, y)
return loss, scores, y
def predict_step(self, batch, batch_idx):
x, y = batch
x = x.reshape(x.size(0), -1)
scores = self.forward(x)
preds = torch.argmax(scores, dim=1)
return preds
def configure_optimizers(self):
return optim.Adam(self.parameters(), lr=0.001)
# Set device cuda for GPU if it's available otherwise run on the CPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Hyperparameters
input_size = 784
num_classes = 10
learning_rate = 0.001
batch_size = 64
num_epochs = 3
# Load Data
entire_dataset = datasets.MNIST(
root="dataset/", train=True, transform=transforms.ToTensor(), download=True
)
train_ds, val_ds = random_split(entire_dataset, [50000, 10000])
test_ds = datasets.MNIST(
root="dataset/", train=False, transform=transforms.ToTensor(), download=True
)
train_loader = DataLoader(dataset=train_ds, batch_size=batch_size, shuffle=True)
val_loader = DataLoader(dataset=train_ds, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(dataset=test_ds, batch_size=batch_size, shuffle=False)
# Initialize network
model = NN(input_size=input_size, num_classes=num_classes).to(device)
# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
# Train Network
for epoch in range(num_epochs):
for batch_idx, (data, targets) in enumerate(tqdm(train_loader)):
# Get data to cuda if possible
data = data.to(device=device)
targets = targets.to(device=device)
# Get to correct shape
data = data.reshape(data.shape[0], -1)
# Forward
scores = model(data)
loss = criterion(scores, targets)
# Backward
optimizer.zero_grad()
loss.backward()
# Gradient descent or adam step
optimizer.step()
# Check accuracy on training & test to see how good our model
def check_accuracy(loader, model):
num_correct = 0
num_samples = 0
model.eval()
# We don't need to keep track of gradients here so we wrap it in torch.no_grad()
with torch.no_grad():
# Loop through the data
for x, y in loader:
# Move data to device
x = x.to(device=device)
y = y.to(device=device)
# Get to correct shape
x = x.reshape(x.shape[0], -1)
# Forward pass
scores = model(x)
_, predictions = scores.max(1)
# Check how many we got correct
num_correct += (predictions == y).sum()
# Keep track of number of samples
num_samples += predictions.size(0)
model.train()
return num_correct / num_samples
# Check accuracy on training & test to see how good our model
model.to(device)
print(f"Accuracy on training set: {check_accuracy(train_loader, model)*100:.2f}")
print(f"Accuracy on validation set: {check_accuracy(val_loader, model)*100:.2f}")
print(f"Accuracy on test set: {check_accuracy(test_loader, model)*100:.2f}")

View File

@@ -0,0 +1,126 @@
import torch
import torch.nn.functional as F
import torchvision.datasets as datasets
import torchvision.transforms as transforms
from torch import nn, optim
from torch.utils.data import DataLoader
from tqdm import tqdm
from torch.utils.data import random_split
import pytorch_lightning as pl
class NN(pl.LightningModule):
def __init__(self, input_size, num_classes):
super().__init__()
self.fc1 = nn.Linear(input_size, 50)
self.fc2 = nn.Linear(50, num_classes)
self.loss_fn = nn.CrossEntropyLoss()
def forward(self, x):
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
def training_step(self, batch, batch_idx):
loss, scores, y = self._common_step(batch, batch_idx)
self.log('train_loss', loss)
return loss
def validation_step(self, batch, batch_idx):
loss, scores, y = self._common_step(batch, batch_idx)
self.log('val_loss', loss)
return loss
def test_step(self, batch, batch_idx):
loss, scores, y = self._common_step(batch, batch_idx)
self.log('test_loss', loss)
return loss
def _common_step(self, batch, batch_idx):
x, y = batch
x = x.reshape(x.size(0), -1)
scores = self.forward(x)
loss = self.loss_fn(scores, y)
return loss, scores, y
def predict_step(self, batch, batch_idx):
x, y = batch
x = x.reshape(x.size(0), -1)
scores = self.forward(x)
preds = torch.argmax(scores, dim=1)
return preds
def configure_optimizers(self):
return optim.Adam(self.parameters(), lr=0.001)
# Set device cuda for GPU if it's available otherwise run on the CPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Hyperparameters
input_size = 784
num_classes = 10
learning_rate = 0.001
batch_size = 64
num_epochs = 3
# Load Data
entire_dataset = datasets.MNIST(
root="dataset/", train=True, transform=transforms.ToTensor(), download=True
)
train_ds, val_ds = random_split(entire_dataset, [50000, 10000])
test_ds = datasets.MNIST(
root="dataset/", train=False, transform=transforms.ToTensor(), download=True
)
train_loader = DataLoader(dataset=train_ds, batch_size=batch_size, shuffle=True)
val_loader = DataLoader(dataset=val_ds, batch_size=batch_size, shuffle=False)
test_loader = DataLoader(dataset=test_ds, batch_size=batch_size, shuffle=False)
# Initialize network
model = NN(input_size=input_size, num_classes=num_classes).to(device)
# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
trainer = pl.Trainer(accelerator="gpu", devices=1, min_epochs=1, max_epochs=3, precision=16)
trainer.fit(model, train_loader, val_loader)
trainer.validate(model, val_loader)
trainer.test(model, test_loader)
# Check accuracy on training & test to see how good our model
def check_accuracy(loader, model):
num_correct = 0
num_samples = 0
model.eval()
# We don't need to keep track of gradients here so we wrap it in torch.no_grad()
with torch.no_grad():
# Loop through the data
for x, y in loader:
# Move data to device
x = x.to(device=device)
y = y.to(device=device)
# Get to correct shape
x = x.reshape(x.shape[0], -1)
# Forward pass
scores = model(x)
_, predictions = scores.max(1)
# Check how many we got correct
num_correct += (predictions == y).sum()
# Keep track of number of samples
num_samples += predictions.size(0)
model.train()
return num_correct / num_samples
# Check accuracy on training & test to see how good our model
model.to(device)
print(f"Accuracy on training set: {check_accuracy(train_loader, model)*100:.2f}")
print(f"Accuracy on validation set: {check_accuracy(val_loader, model)*100:.2f}")
print(f"Accuracy on test set: {check_accuracy(test_loader, model)*100:.2f}")

View File

@@ -0,0 +1,150 @@
import torch
import torch.nn.functional as F
import torchvision.datasets as datasets
import torchvision.transforms as transforms
from torch import nn, optim
from torch.utils.data import DataLoader
from tqdm import tqdm
from torch.utils.data import random_split
import pytorch_lightning as pl
import torchmetrics
from torchmetrics import Metric
class MyAccuracy(Metric):
def __init__(self):
super().__init__()
self.add_state("total", default=torch.tensor(0), dist_reduce_fx="sum")
self.add_state("correct", default=torch.tensor(0), dist_reduce_fx="sum")
def update(self, preds, target):
preds = torch.argmax(preds, dim=1)
assert preds.shape == target.shape
self.correct += torch.sum(preds == target)
self.total += target.numel()
def compute(self):
return self.correct.float() / self.total.float()
class NN(pl.LightningModule):
def __init__(self, input_size, num_classes):
super().__init__()
self.fc1 = nn.Linear(input_size, 50)
self.fc2 = nn.Linear(50, num_classes)
self.loss_fn = nn.CrossEntropyLoss()
self.accuracy = torchmetrics.Accuracy(task="multiclass", num_classes=num_classes)
self.my_accuracy = MyAccuracy()
self.f1_score = torchmetrics.F1Score(task="multiclass", num_classes=num_classes)
def forward(self, x):
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
def training_step(self, batch, batch_idx):
loss, scores, y = self._common_step(batch, batch_idx)
accuracy = self.my_accuracy(scores, y)
f1_score = self.f1_score(scores, y)
self.log_dict({'train_loss': loss, 'train_accuracy': accuracy, 'train_f1_score': f1_score},
on_step=False, on_epoch=True, prog_bar=True)
return {'loss': loss, "scores": scores, "y": y}
def validation_step(self, batch, batch_idx):
loss, scores, y = self._common_step(batch, batch_idx)
self.log('val_loss', loss)
return loss
def test_step(self, batch, batch_idx):
loss, scores, y = self._common_step(batch, batch_idx)
self.log('test_loss', loss)
return loss
def _common_step(self, batch, batch_idx):
x, y = batch
x = x.reshape(x.size(0), -1)
scores = self.forward(x)
loss = self.loss_fn(scores, y)
return loss, scores, y
def predict_step(self, batch, batch_idx):
x, y = batch
x = x.reshape(x.size(0), -1)
scores = self.forward(x)
preds = torch.argmax(scores, dim=1)
return preds
def configure_optimizers(self):
return optim.Adam(self.parameters(), lr=0.001)
# Set device cuda for GPU if it's available otherwise run on the CPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Hyperparameters
input_size = 784
num_classes = 10
learning_rate = 0.001
batch_size = 64
num_epochs = 3
# Load Data
entire_dataset = datasets.MNIST(
root="dataset/", train=True, transform=transforms.ToTensor(), download=True
)
train_ds, val_ds = random_split(entire_dataset, [50000, 10000])
test_ds = datasets.MNIST(
root="dataset/", train=False, transform=transforms.ToTensor(), download=True
)
train_loader = DataLoader(dataset=train_ds, batch_size=batch_size, shuffle=True)
val_loader = DataLoader(dataset=val_ds, batch_size=batch_size, shuffle=False)
test_loader = DataLoader(dataset=test_ds, batch_size=batch_size, shuffle=False)
# Initialize network
model = NN(input_size=input_size, num_classes=num_classes).to(device)
# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
trainer = pl.Trainer(accelerator="gpu", devices=1, min_epochs=1, max_epochs=3, precision=16)
trainer.fit(model, train_loader, val_loader)
trainer.validate(model, val_loader)
trainer.test(model, test_loader)
# Check accuracy on training & test to see how good our model
def check_accuracy(loader, model):
num_correct = 0
num_samples = 0
model.eval()
# We don't need to keep track of gradients here so we wrap it in torch.no_grad()
with torch.no_grad():
# Loop through the data
for x, y in loader:
# Move data to device
x = x.to(device=device)
y = y.to(device=device)
# Get to correct shape
x = x.reshape(x.shape[0], -1)
# Forward pass
scores = model(x)
_, predictions = scores.max(1)
# Check how many we got correct
num_correct += (predictions == y).sum()
# Keep track of number of samples
num_samples += predictions.size(0)
model.train()
return num_correct / num_samples
# Check accuracy on training & test to see how good our model
model.to(device)
print(f"Accuracy on training set: {check_accuracy(train_loader, model)*100:.2f}")
print(f"Accuracy on validation set: {check_accuracy(val_loader, model)*100:.2f}")
print(f"Accuracy on test set: {check_accuracy(test_loader, model)*100:.2f}")

View File

@@ -0,0 +1,146 @@
import torch
import torch.nn.functional as F
import torchvision.datasets as datasets
import torchvision.transforms as transforms
from torch import nn, optim
from torch.utils.data import DataLoader
from tqdm import tqdm
from torch.utils.data import random_split
import pytorch_lightning as pl
import torchmetrics
from torchmetrics import Metric
class MyAccuracy(Metric):
def __init__(self):
super().__init__()
self.add_state("total", default=torch.tensor(0), dist_reduce_fx="sum")
self.add_state("correct", default=torch.tensor(0), dist_reduce_fx="sum")
def update(self, preds, target):
preds = torch.argmax(preds, dim=1)
assert preds.shape == target.shape
self.correct += torch.sum(preds == target)
self.total += target.numel()
def compute(self):
return self.correct.float() / self.total.float()
class NN(pl.LightningModule):
def __init__(self, input_size, num_classes):
super().__init__()
self.fc1 = nn.Linear(input_size, 50)
self.fc2 = nn.Linear(50, num_classes)
self.loss_fn = nn.CrossEntropyLoss()
self.accuracy = torchmetrics.Accuracy(task="multiclass", num_classes=num_classes)
self.my_accuracy = MyAccuracy()
self.f1_score = torchmetrics.F1Score(task="multiclass", num_classes=num_classes)
def forward(self, x):
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
def training_step(self, batch, batch_idx):
loss, scores, y = self._common_step(batch, batch_idx)
accuracy = self.my_accuracy(scores, y)
f1_score = self.f1_score(scores, y)
self.log_dict({'train_loss': loss, 'train_accuracy': accuracy, 'train_f1_score': f1_score},
on_step=False, on_epoch=True, prog_bar=True)
return {'loss': loss, "scores": scores, "y": y}
def validation_step(self, batch, batch_idx):
loss, scores, y = self._common_step(batch, batch_idx)
self.log('val_loss', loss)
return loss
def test_step(self, batch, batch_idx):
loss, scores, y = self._common_step(batch, batch_idx)
self.log('test_loss', loss)
return loss
def _common_step(self, batch, batch_idx):
x, y = batch
x = x.reshape(x.size(0), -1)
scores = self.forward(x)
loss = self.loss_fn(scores, y)
return loss, scores, y
def predict_step(self, batch, batch_idx):
x, y = batch
x = x.reshape(x.size(0), -1)
scores = self.forward(x)
preds = torch.argmax(scores, dim=1)
return preds
def configure_optimizers(self):
return optim.Adam(self.parameters(), lr=0.001)
class MnistDataModule(pl.LightningDataModule):
def __init__(self, data_dir, batch_size, num_workers):
super().__init__()
self.data_dir = data_dir
self.batch_size = batch_size
self.num_workers = num_workers
def prepare_data(self):
datasets.MNIST(self.data_dir, train=True, download=True)
datasets.MNIST(self.data_dir, train=False, download=True)
def setup(self, stage):
entire_dataset = datasets.MNIST(
root=self.data_dir,
train=True,
transform=transforms.ToTensor(),
download=False,
)
self.train_ds, self.val_ds = random_split(entire_dataset, [50000, 10000])
self.test_ds = datasets.MNIST(
root=self.data_dir,
train=False,
transform=transforms.ToTensor(),
download=False,
)
def train_dataloader(self):
return DataLoader(
self.train_ds,
batch_size=self.batch_size,
num_workers=self.num_workers,
shuffle=True,
)
def val_dataloader(self):
return DataLoader(
self.val_ds,
batch_size=self.batch_size,
num_workers=self.num_workers,
shuffle=False,
)
def test_dataloader(self):
return DataLoader(
self.test_ds,
batch_size=self.batch_size,
num_workers=self.num_workers,
shuffle=False,
)
# Set device cuda for GPU if it's available otherwise run on the CPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Hyperparameters
input_size = 784
num_classes = 10
learning_rate = 0.001
batch_size = 64
num_epochs = 3
model = NN(input_size=input_size, num_classes=num_classes)
dm = MnistDataModule(data_dir="dataset/", batch_size=batch_size, num_workers=4)
trainer = pl.Trainer(accelerator="gpu", devices=1, min_epochs=1, max_epochs=3, precision=16)
trainer.fit(model, dm)
trainer.validate(model, dm)
trainer.test(model, dm)

View File

@@ -0,0 +1,15 @@
# Training hyperparameters
INPUT_SIZE = 784
NUM_CLASSES = 10
LEARNING_RATE = 0.001
BATCH_SIZE = 64
NUM_EPOCHS = 3
# Dataset
DATA_DIR = "dataset/"
NUM_WORKERS = 4
# Compute related
ACCELERATOR = "gpu"
DEVICES = [0]
PRECISION = 16

View File

@@ -0,0 +1,59 @@
import torch
import torch.nn.functional as F
import torchvision.datasets as datasets
import torchvision.transforms as transforms
from torch import nn, optim
from torch.utils.data import DataLoader
from torch.utils.data import random_split
import pytorch_lightning as pl
class MnistDataModule(pl.LightningDataModule):
def __init__(self, data_dir, batch_size, num_workers):
super().__init__()
self.data_dir = data_dir
self.batch_size = batch_size
self.num_workers = num_workers
def prepare_data(self):
datasets.MNIST(self.data_dir, train=True, download=True)
datasets.MNIST(self.data_dir, train=False, download=True)
def setup(self, stage):
entire_dataset = datasets.MNIST(
root=self.data_dir,
train=True,
transform=transforms.ToTensor(),
download=False,
)
self.train_ds, self.val_ds = random_split(entire_dataset, [50000, 10000])
self.test_ds = datasets.MNIST(
root=self.data_dir,
train=False,
transform=transforms.ToTensor(),
download=False,
)
def train_dataloader(self):
return DataLoader(
self.train_ds,
batch_size=self.batch_size,
num_workers=self.num_workers,
shuffle=True,
)
def val_dataloader(self):
return DataLoader(
self.val_ds,
batch_size=self.batch_size,
num_workers=self.num_workers,
shuffle=False,
)
def test_dataloader(self):
return DataLoader(
self.test_ds,
batch_size=self.batch_size,
num_workers=self.num_workers,
shuffle=False,
)

View File

@@ -0,0 +1,71 @@
import torch
import torch.nn.functional as F
import torchvision.datasets as datasets
import torchvision.transforms as transforms
from torch import nn, optim
from torch.utils.data import DataLoader
from tqdm import tqdm
import pytorch_lightning as pl
import torchmetrics
from torchmetrics import Metric
class NN(pl.LightningModule):
def __init__(self, input_size, learning_rate, num_classes):
super().__init__()
self.lr = learning_rate
self.fc1 = nn.Linear(input_size, 50)
self.fc2 = nn.Linear(50, num_classes)
self.loss_fn = nn.CrossEntropyLoss()
self.accuracy = torchmetrics.Accuracy(
task="multiclass", num_classes=num_classes
)
self.f1_score = torchmetrics.F1Score(task="multiclass", num_classes=num_classes)
def forward(self, x):
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
def training_step(self, batch, batch_idx):
loss, scores, y = self._common_step(batch, batch_idx)
accuracy = self.accuracy(scores, y)
f1_score = self.f1_score(scores, y)
self.log_dict(
{
"train_loss": loss,
"train_accuracy": accuracy,
"train_f1_score": f1_score,
},
on_step=False,
on_epoch=True,
prog_bar=True,
)
return {"loss": loss, "scores": scores, "y": y}
def validation_step(self, batch, batch_idx):
loss, scores, y = self._common_step(batch, batch_idx)
self.log("val_loss", loss)
return loss
def test_step(self, batch, batch_idx):
loss, scores, y = self._common_step(batch, batch_idx)
self.log("test_loss", loss)
return loss
def _common_step(self, batch, batch_idx):
x, y = batch
x = x.reshape(x.size(0), -1)
scores = self.forward(x)
loss = self.loss_fn(scores, y)
return loss, scores, y
def predict_step(self, batch, batch_idx):
x, y = batch
x = x.reshape(x.size(0), -1)
scores = self.forward(x)
preds = torch.argmax(scores, dim=1)
return preds
def configure_optimizers(self):
return optim.Adam(self.parameters(), lr=self.lr)

View File

@@ -0,0 +1,27 @@
import torch
import pytorch_lightning as pl
from model import NN
from dataset import MnistDataModule
import config
if __name__ == "__main__":
model = NN(
input_size=config.INPUT_SIZE,
learning_rate=config.LEARNING_RATE,
num_classes=config.NUM_CLASSES,
)
dm = MnistDataModule(
data_dir=config.DATA_DIR,
batch_size=config.BATCH_SIZE,
num_workers=config.NUM_WORKERS,
)
trainer = pl.Trainer(
accelerator=config.ACCELERATOR,
devices=config.DEVICES,
min_epochs=1,
max_epochs=3,
precision=config.PRECISION,
)
trainer.fit(model, dm)
trainer.validate(model, dm)
trainer.test(model, dm)

View File

@@ -0,0 +1,12 @@
from pytorch_lightning.callbacks import EarlyStopping, Callback
class MyPrintingCallback(Callback):
def __init__(self):
super().__init__()
def on_train_start(self, trainer, pl_module):
print("Starting to train!")
def on_train_end(self, trainer, pl_module):
print("Training is done.")

View File

@@ -0,0 +1,15 @@
# Training hyperparameters
INPUT_SIZE = 784
NUM_CLASSES = 10
LEARNING_RATE = 0.001
BATCH_SIZE = 64
NUM_EPOCHS = 1000
# Dataset
DATA_DIR = "dataset/"
NUM_WORKERS = 4
# Compute related
ACCELERATOR = "gpu"
DEVICES = [0]
PRECISION = 16

View File

@@ -0,0 +1,59 @@
import torch
import torch.nn.functional as F
import torchvision.datasets as datasets
import torchvision.transforms as transforms
from torch import nn, optim
from torch.utils.data import DataLoader
from torch.utils.data import random_split
import pytorch_lightning as pl
class MnistDataModule(pl.LightningDataModule):
def __init__(self, data_dir, batch_size, num_workers):
super().__init__()
self.data_dir = data_dir
self.batch_size = batch_size
self.num_workers = num_workers
def prepare_data(self):
datasets.MNIST(self.data_dir, train=True, download=True)
datasets.MNIST(self.data_dir, train=False, download=True)
def setup(self, stage):
entire_dataset = datasets.MNIST(
root=self.data_dir,
train=True,
transform=transforms.ToTensor(),
download=False,
)
self.train_ds, self.val_ds = random_split(entire_dataset, [50000, 10000])
self.test_ds = datasets.MNIST(
root=self.data_dir,
train=False,
transform=transforms.ToTensor(),
download=False,
)
def train_dataloader(self):
return DataLoader(
self.train_ds,
batch_size=self.batch_size,
num_workers=self.num_workers,
shuffle=True,
)
def val_dataloader(self):
return DataLoader(
self.val_ds,
batch_size=self.batch_size,
num_workers=self.num_workers,
shuffle=False,
)
def test_dataloader(self):
return DataLoader(
self.test_ds,
batch_size=self.batch_size,
num_workers=self.num_workers,
shuffle=False,
)

View File

@@ -0,0 +1,71 @@
import torch
import torch.nn.functional as F
import torchvision.datasets as datasets
import torchvision.transforms as transforms
from torch import nn, optim
from torch.utils.data import DataLoader
from tqdm import tqdm
import pytorch_lightning as pl
import torchmetrics
from torchmetrics import Metric
class NN(pl.LightningModule):
def __init__(self, input_size, learning_rate, num_classes):
super().__init__()
self.lr = learning_rate
self.fc1 = nn.Linear(input_size, 50)
self.fc2 = nn.Linear(50, num_classes)
self.loss_fn = nn.CrossEntropyLoss()
self.accuracy = torchmetrics.Accuracy(
task="multiclass", num_classes=num_classes
)
self.f1_score = torchmetrics.F1Score(task="multiclass", num_classes=num_classes)
def forward(self, x):
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
def training_step(self, batch, batch_idx):
loss, scores, y = self._common_step(batch, batch_idx)
accuracy = self.accuracy(scores, y)
f1_score = self.f1_score(scores, y)
self.log_dict(
{
"train_loss": loss,
"train_accuracy": accuracy,
"train_f1_score": f1_score,
},
on_step=False,
on_epoch=True,
prog_bar=True,
)
return {"loss": loss, "scores": scores, "y": y}
def validation_step(self, batch, batch_idx):
loss, scores, y = self._common_step(batch, batch_idx)
self.log("val_loss", loss)
return loss
def test_step(self, batch, batch_idx):
loss, scores, y = self._common_step(batch, batch_idx)
self.log("test_loss", loss)
return loss
def _common_step(self, batch, batch_idx):
x, y = batch
x = x.reshape(x.size(0), -1)
scores = self.forward(x)
loss = self.loss_fn(scores, y)
return loss, scores, y
def predict_step(self, batch, batch_idx):
x, y = batch
x = x.reshape(x.size(0), -1)
scores = self.forward(x)
preds = torch.argmax(scores, dim=1)
return preds
def configure_optimizers(self):
return optim.Adam(self.parameters(), lr=self.lr)

View File

@@ -0,0 +1,31 @@
import torch
import pytorch_lightning as pl
from model import NN
from dataset import MnistDataModule
import config
from callbacks import MyPrintingCallback, EarlyStopping
torch.set_float32_matmul_precision("medium") # to make lightning happy
if __name__ == "__main__":
model = NN(
input_size=config.INPUT_SIZE,
learning_rate=config.LEARNING_RATE,
num_classes=config.NUM_CLASSES,
)
dm = MnistDataModule(
data_dir=config.DATA_DIR,
batch_size=config.BATCH_SIZE,
num_workers=config.NUM_WORKERS,
)
trainer = pl.Trainer(
accelerator=config.ACCELERATOR,
devices=config.DEVICES,
min_epochs=1,
max_epochs=config.NUM_EPOCHS,
precision=config.PRECISION,
callbacks=[MyPrintingCallback(), EarlyStopping(monitor="val_loss")],
)
trainer.fit(model, dm)
trainer.validate(model, dm)
trainer.test(model, dm)

View File

@@ -0,0 +1,12 @@
from pytorch_lightning.callbacks import EarlyStopping, Callback
class MyPrintingCallback(Callback):
def __init__(self):
super().__init__()
def on_train_start(self, trainer, pl_module):
print("Starting to train!")
def on_train_end(self, trainer, pl_module):
print("Training is done.")

View File

@@ -0,0 +1,15 @@
# Training hyperparameters
INPUT_SIZE = 784
NUM_CLASSES = 10
LEARNING_RATE = 0.001
BATCH_SIZE = 64
NUM_EPOCHS = 1000
# Dataset
DATA_DIR = "dataset/"
NUM_WORKERS = 4
# Compute related
ACCELERATOR = "gpu"
DEVICES = [0]
PRECISION = 16

View File

@@ -0,0 +1,64 @@
import torch
import torch.nn.functional as F
import torchvision.datasets as datasets
import torchvision.transforms as transforms
from torch import nn, optim
from torch.utils.data import DataLoader
from torch.utils.data import random_split
import pytorch_lightning as pl
from torchvision.transforms import RandomHorizontalFlip, RandomVerticalFlip
class MnistDataModule(pl.LightningDataModule):
def __init__(self, data_dir, batch_size, num_workers):
super().__init__()
self.data_dir = data_dir
self.batch_size = batch_size
self.num_workers = num_workers
def prepare_data(self):
datasets.MNIST(self.data_dir, train=True, download=True)
datasets.MNIST(self.data_dir, train=False, download=True)
def setup(self, stage):
entire_dataset = datasets.MNIST(
root=self.data_dir,
train=True,
transform=transforms.Compose([
transforms.RandomVerticalFlip(),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
]),
download=False,
)
self.train_ds, self.val_ds = random_split(entire_dataset, [50000, 10000])
self.test_ds = datasets.MNIST(
root=self.data_dir,
train=False,
transform=transforms.ToTensor(),
download=False,
)
def train_dataloader(self):
return DataLoader(
self.train_ds,
batch_size=self.batch_size,
num_workers=self.num_workers,
shuffle=True,
)
def val_dataloader(self):
return DataLoader(
self.val_ds,
batch_size=self.batch_size,
num_workers=self.num_workers,
shuffle=False,
)
def test_dataloader(self):
return DataLoader(
self.test_ds,
batch_size=self.batch_size,
num_workers=self.num_workers,
shuffle=False,
)

View File

@@ -0,0 +1,79 @@
import torch
import torch.nn.functional as F
import torchvision.datasets as datasets
import torchvision.transforms as transforms
from torch import nn, optim
from torch.utils.data import DataLoader
from tqdm import tqdm
import pytorch_lightning as pl
import torchmetrics
from torchmetrics import Metric
import torchvision
class NN(pl.LightningModule):
def __init__(self, input_size, learning_rate, num_classes):
super().__init__()
self.lr = learning_rate
self.fc1 = nn.Linear(input_size, 50)
self.fc2 = nn.Linear(50, num_classes)
self.loss_fn = nn.CrossEntropyLoss()
self.accuracy = torchmetrics.Accuracy(
task="multiclass", num_classes=num_classes
)
self.f1_score = torchmetrics.F1Score(task="multiclass", num_classes=num_classes)
def forward(self, x):
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
def training_step(self, batch, batch_idx):
x, y = batch
loss, scores, y = self._common_step(batch, batch_idx)
accuracy = self.accuracy(scores, y)
f1_score = self.f1_score(scores, y)
self.log_dict(
{
"train_loss": loss,
"train_accuracy": accuracy,
"train_f1_score": f1_score,
},
on_step=False,
on_epoch=True,
prog_bar=True,
)
if batch_idx % 100 == 0:
x = x[:8]
grid = torchvision.utils.make_grid(x.view(-1, 1, 28, 28))
self.logger.experiment.add_image("mnist_images", grid, self.global_step)
return {"loss": loss, "scores": scores, "y": y}
def validation_step(self, batch, batch_idx):
loss, scores, y = self._common_step(batch, batch_idx)
self.log("val_loss", loss)
return loss
def test_step(self, batch, batch_idx):
loss, scores, y = self._common_step(batch, batch_idx)
self.log("test_loss", loss)
return loss
def _common_step(self, batch, batch_idx):
x, y = batch
x = x.reshape(x.size(0), -1)
scores = self.forward(x)
loss = self.loss_fn(scores, y)
return loss, scores, y
def predict_step(self, batch, batch_idx):
x, y = batch
x = x.reshape(x.size(0), -1)
scores = self.forward(x)
preds = torch.argmax(scores, dim=1)
return preds
def configure_optimizers(self):
return optim.Adam(self.parameters(), lr=self.lr)

View File

@@ -0,0 +1,34 @@
import torch
import pytorch_lightning as pl
from model import NN
from dataset import MnistDataModule
import config
from callbacks import MyPrintingCallback, EarlyStopping
from pytorch_lightning.loggers import TensorBoardLogger
torch.set_float32_matmul_precision("medium") # to make lightning happy
if __name__ == "__main__":
logger = TensorBoardLogger("tb_logs", name="mnist_model_v0")
model = NN(
input_size=config.INPUT_SIZE,
learning_rate=config.LEARNING_RATE,
num_classes=config.NUM_CLASSES,
)
dm = MnistDataModule(
data_dir=config.DATA_DIR,
batch_size=config.BATCH_SIZE,
num_workers=config.NUM_WORKERS,
)
trainer = pl.Trainer(
logger=logger,
accelerator=config.ACCELERATOR,
devices=config.DEVICES,
min_epochs=1,
max_epochs=config.NUM_EPOCHS,
precision=config.PRECISION,
callbacks=[MyPrintingCallback(), EarlyStopping(monitor="val_loss")],
)
trainer.fit(model, dm)
trainer.validate(model, dm)
trainer.test(model, dm)

View File

@@ -0,0 +1,12 @@
from pytorch_lightning.callbacks import EarlyStopping, Callback
class MyPrintingCallback(Callback):
def __init__(self):
super().__init__()
def on_train_start(self, trainer, pl_module):
print("Starting to train!")
def on_train_end(self, trainer, pl_module):
print("Training is done.")

View File

@@ -0,0 +1,15 @@
# Training hyperparameters
INPUT_SIZE = 784
NUM_CLASSES = 10
LEARNING_RATE = 0.001
BATCH_SIZE = 64
NUM_EPOCHS = 3
# Dataset
DATA_DIR = "dataset/"
NUM_WORKERS = 4
# Compute related
ACCELERATOR = "gpu"
DEVICES = [0]
PRECISION = 16

View File

@@ -0,0 +1,64 @@
import torch
import torch.nn.functional as F
import torchvision.datasets as datasets
import torchvision.transforms as transforms
from torch import nn, optim
from torch.utils.data import DataLoader
from torch.utils.data import random_split
import pytorch_lightning as pl
from torchvision.transforms import RandomHorizontalFlip, RandomVerticalFlip
class MnistDataModule(pl.LightningDataModule):
def __init__(self, data_dir, batch_size, num_workers):
super().__init__()
self.data_dir = data_dir
self.batch_size = batch_size
self.num_workers = num_workers
def prepare_data(self):
datasets.MNIST(self.data_dir, train=True, download=True)
datasets.MNIST(self.data_dir, train=False, download=True)
def setup(self, stage):
entire_dataset = datasets.MNIST(
root=self.data_dir,
train=True,
transform=transforms.Compose([
transforms.RandomVerticalFlip(),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
]),
download=False,
)
self.train_ds, self.val_ds = random_split(entire_dataset, [50000, 10000])
self.test_ds = datasets.MNIST(
root=self.data_dir,
train=False,
transform=transforms.ToTensor(),
download=False,
)
def train_dataloader(self):
return DataLoader(
self.train_ds,
batch_size=self.batch_size,
num_workers=self.num_workers,
shuffle=True,
)
def val_dataloader(self):
return DataLoader(
self.val_ds,
batch_size=self.batch_size,
num_workers=self.num_workers,
shuffle=False,
)
def test_dataloader(self):
return DataLoader(
self.test_ds,
batch_size=self.batch_size,
num_workers=self.num_workers,
shuffle=False,
)

View File

@@ -0,0 +1,89 @@
import torch
import torch.nn.functional as F
import torchvision.datasets as datasets
import torchvision.transforms as transforms
from torch import nn, optim
from torch.utils.data import DataLoader
from tqdm import tqdm
import pytorch_lightning as pl
import torchmetrics
from torchmetrics import Metric
import torchvision
class NN(pl.LightningModule):
def __init__(self, input_size, learning_rate, num_classes):
super().__init__()
self.lr = learning_rate
self.fc1 = nn.Linear(input_size, 50)
self.fc2 = nn.Linear(50, num_classes)
self.loss_fn = nn.CrossEntropyLoss()
self.accuracy = torchmetrics.Accuracy(
task="multiclass", num_classes=num_classes
)
self.f1_score = torchmetrics.F1Score(task="multiclass", num_classes=num_classes)
def forward(self, x):
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
def training_step(self, batch, batch_idx):
x, y = batch
loss, scores, y = self._common_step(batch, batch_idx)
self.log_dict(
{
"train_loss": loss,
},
on_step=False,
on_epoch=True,
prog_bar=True,
)
if batch_idx % 100 == 0:
x = x[:8]
grid = torchvision.utils.make_grid(x.view(-1, 1, 28, 28))
self.logger.experiment.add_image("mnist_images", grid, self.global_step)
return {"loss": loss, "scores": scores, "y": y}
def training_epoch_end(self, outputs):
scores = torch.cat([x["scores"] for x in outputs])
y = torch.cat([x["y"] for x in outputs])
self.log_dict(
{
"train_acc": self.accuracy(scores, y),
"train_f1": self.f1_score(scores, y),
},
on_step=False,
on_epoch=True,
prog_bar=True,
)
def validation_step(self, batch, batch_idx):
loss, scores, y = self._common_step(batch, batch_idx)
self.log("val_loss", loss)
return loss
def test_step(self, batch, batch_idx):
loss, scores, y = self._common_step(batch, batch_idx)
self.log("test_loss", loss)
return loss
def _common_step(self, batch, batch_idx):
x, y = batch
x = x.reshape(x.size(0), -1)
scores = self.forward(x)
loss = self.loss_fn(scores, y)
return loss, scores, y
def predict_step(self, batch, batch_idx):
x, y = batch
x = x.reshape(x.size(0), -1)
scores = self.forward(x)
preds = torch.argmax(scores, dim=1)
return preds
def configure_optimizers(self):
return optim.Adam(self.parameters(), lr=self.lr)

View File

@@ -0,0 +1,40 @@
import torch
import pytorch_lightning as pl
from model import NN
from dataset import MnistDataModule
import config
from callbacks import MyPrintingCallback, EarlyStopping
from pytorch_lightning.loggers import TensorBoardLogger
from pytorch_lightning.profilers import PyTorchProfiler
torch.set_float32_matmul_precision("medium") # to make lightning happy
if __name__ == "__main__":
logger = TensorBoardLogger("tb_logs", name="mnist_model_v1")
profiler = PyTorchProfiler(
on_trace_ready=torch.profiler.tensorboard_trace_handler("tb_logs/profiler0"),
schedule=torch.profiler.schedule(skip_first=10, wait=1, warmup=1, active=20),
)
model = NN(
input_size=config.INPUT_SIZE,
learning_rate=config.LEARNING_RATE,
num_classes=config.NUM_CLASSES,
)
dm = MnistDataModule(
data_dir=config.DATA_DIR,
batch_size=config.BATCH_SIZE,
num_workers=config.NUM_WORKERS,
)
trainer = pl.Trainer(
profiler=profiler,
logger=logger,
accelerator=config.ACCELERATOR,
devices=config.DEVICES,
min_epochs=1,
max_epochs=config.NUM_EPOCHS,
precision=config.PRECISION,
callbacks=[MyPrintingCallback(), EarlyStopping(monitor="val_loss")],
)
trainer.fit(model, dm)
trainer.validate(model, dm)
trainer.test(model, dm)