Files
Machine-Learning-Collection/ML/Pytorch/pytorch_lightning/5. DataModule/simple_fc.py

147 lines
4.6 KiB
Python

import torch
import torch.nn.functional as F
import torchvision.datasets as datasets
import torchvision.transforms as transforms
from torch import nn, optim
from torch.utils.data import DataLoader
from tqdm import tqdm
from torch.utils.data import random_split
import pytorch_lightning as pl
import torchmetrics
from torchmetrics import Metric
class MyAccuracy(Metric):
def __init__(self):
super().__init__()
self.add_state("total", default=torch.tensor(0), dist_reduce_fx="sum")
self.add_state("correct", default=torch.tensor(0), dist_reduce_fx="sum")
def update(self, preds, target):
preds = torch.argmax(preds, dim=1)
assert preds.shape == target.shape
self.correct += torch.sum(preds == target)
self.total += target.numel()
def compute(self):
return self.correct.float() / self.total.float()
class NN(pl.LightningModule):
def __init__(self, input_size, num_classes):
super().__init__()
self.fc1 = nn.Linear(input_size, 50)
self.fc2 = nn.Linear(50, num_classes)
self.loss_fn = nn.CrossEntropyLoss()
self.accuracy = torchmetrics.Accuracy(task="multiclass", num_classes=num_classes)
self.my_accuracy = MyAccuracy()
self.f1_score = torchmetrics.F1Score(task="multiclass", num_classes=num_classes)
def forward(self, x):
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
def training_step(self, batch, batch_idx):
loss, scores, y = self._common_step(batch, batch_idx)
accuracy = self.my_accuracy(scores, y)
f1_score = self.f1_score(scores, y)
self.log_dict({'train_loss': loss, 'train_accuracy': accuracy, 'train_f1_score': f1_score},
on_step=False, on_epoch=True, prog_bar=True)
return {'loss': loss, "scores": scores, "y": y}
def validation_step(self, batch, batch_idx):
loss, scores, y = self._common_step(batch, batch_idx)
self.log('val_loss', loss)
return loss
def test_step(self, batch, batch_idx):
loss, scores, y = self._common_step(batch, batch_idx)
self.log('test_loss', loss)
return loss
def _common_step(self, batch, batch_idx):
x, y = batch
x = x.reshape(x.size(0), -1)
scores = self.forward(x)
loss = self.loss_fn(scores, y)
return loss, scores, y
def predict_step(self, batch, batch_idx):
x, y = batch
x = x.reshape(x.size(0), -1)
scores = self.forward(x)
preds = torch.argmax(scores, dim=1)
return preds
def configure_optimizers(self):
return optim.Adam(self.parameters(), lr=0.001)
class MnistDataModule(pl.LightningDataModule):
def __init__(self, data_dir, batch_size, num_workers):
super().__init__()
self.data_dir = data_dir
self.batch_size = batch_size
self.num_workers = num_workers
def prepare_data(self):
datasets.MNIST(self.data_dir, train=True, download=True)
datasets.MNIST(self.data_dir, train=False, download=True)
def setup(self, stage):
entire_dataset = datasets.MNIST(
root=self.data_dir,
train=True,
transform=transforms.ToTensor(),
download=False,
)
self.train_ds, self.val_ds = random_split(entire_dataset, [50000, 10000])
self.test_ds = datasets.MNIST(
root=self.data_dir,
train=False,
transform=transforms.ToTensor(),
download=False,
)
def train_dataloader(self):
return DataLoader(
self.train_ds,
batch_size=self.batch_size,
num_workers=self.num_workers,
shuffle=True,
)
def val_dataloader(self):
return DataLoader(
self.val_ds,
batch_size=self.batch_size,
num_workers=self.num_workers,
shuffle=False,
)
def test_dataloader(self):
return DataLoader(
self.test_ds,
batch_size=self.batch_size,
num_workers=self.num_workers,
shuffle=False,
)
# Set device cuda for GPU if it's available otherwise run on the CPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Hyperparameters
input_size = 784
num_classes = 10
learning_rate = 0.001
batch_size = 64
num_epochs = 3
model = NN(input_size=input_size, num_classes=num_classes)
dm = MnistDataModule(data_dir="dataset/", batch_size=batch_size, num_workers=4)
trainer = pl.Trainer(accelerator="gpu", devices=1, min_epochs=1, max_epochs=3, precision=16)
trainer.fit(model, dm)
trainer.validate(model, dm)
trainer.test(model, dm)