mirror of
https://github.com/aladdinpersson/Machine-Learning-Collection.git
synced 2026-02-20 13:50:41 +00:00
fullynet code review and update with small improvement
This commit is contained in:
@@ -9,7 +9,7 @@ Programmed by Aladdin Persson
|
||||
* 2020-04-08: Initial coding
|
||||
* 2021-03-24: Added more detailed comments also removed part of
|
||||
check_accuracy which would only work specifically on MNIST.
|
||||
|
||||
* 2022-09-23: Updated with more detailed comments, docstrings to functions, and checked code still functions as intended.
|
||||
"""
|
||||
|
||||
# Imports
|
||||
@@ -27,9 +27,19 @@ from tqdm import tqdm # For nice progress bar!
|
||||
# inheriting from nn.Module, this is the most general way to create your networks and
|
||||
# allows for more flexibility. I encourage you to also check out nn.Sequential which
|
||||
# would be easier to use in this scenario but I wanted to show you something that
|
||||
# "always" works.
|
||||
# "always" works and is a general approach.
|
||||
class NN(nn.Module):
|
||||
def __init__(self, input_size, num_classes):
|
||||
"""
|
||||
Here we define the layers of the network. We create two fully connected layers
|
||||
|
||||
Parameters:
|
||||
input_size: the size of the input, in this case 784 (28x28)
|
||||
num_classes: the number of classes we want to predict, in this case 10 (0-9)
|
||||
|
||||
Returns:
|
||||
None
|
||||
"""
|
||||
super(NN, self).__init__()
|
||||
# Our first linear layer take input_size, in this case 784 nodes to 50
|
||||
# and our second linear layer takes 50 to the num_classes we have, in
|
||||
@@ -42,6 +52,12 @@ class NN(nn.Module):
|
||||
x here is the mnist images and we run it through fc1, fc2 that we created above.
|
||||
we also add a ReLU activation function in between and for that (since it has no parameters)
|
||||
I recommend using nn.functional (F)
|
||||
|
||||
Parameters:
|
||||
x: mnist images
|
||||
|
||||
Returns:
|
||||
out: the output of the network
|
||||
"""
|
||||
|
||||
x = F.relu(self.fc1(x))
|
||||
@@ -52,15 +68,14 @@ class NN(nn.Module):
|
||||
# Set device cuda for GPU if it's available otherwise run on the CPU
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
|
||||
# Hyperparameters of our neural network which depends on the dataset, and
|
||||
# also just experimenting to see what works well (learning rate for example).
|
||||
# Hyperparameters
|
||||
input_size = 784
|
||||
num_classes = 10
|
||||
learning_rate = 0.001
|
||||
batch_size = 64
|
||||
num_epochs = 3
|
||||
|
||||
# Load Training and Test data
|
||||
# Load Data
|
||||
train_dataset = datasets.MNIST(root="dataset/", train=True, transform=transforms.ToTensor(), download=True)
|
||||
test_dataset = datasets.MNIST(root="dataset/", train=False, transform=transforms.ToTensor(), download=True)
|
||||
train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
|
||||
@@ -83,38 +98,63 @@ for epoch in range(num_epochs):
|
||||
# Get to correct shape
|
||||
data = data.reshape(data.shape[0], -1)
|
||||
|
||||
# forward
|
||||
# Forward
|
||||
scores = model(data)
|
||||
loss = criterion(scores, targets)
|
||||
|
||||
# backward
|
||||
# Backward
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
|
||||
# gradient descent or adam step
|
||||
# Gradient descent or adam step
|
||||
optimizer.step()
|
||||
|
||||
|
||||
# Check accuracy on training & test to see how good our model
|
||||
def check_accuracy(loader, model):
|
||||
"""
|
||||
Check accuracy of our trained model given a loader and a model
|
||||
|
||||
Parameters:
|
||||
loader: torch.utils.data.DataLoader
|
||||
A loader for the dataset you want to check accuracy on
|
||||
model: nn.Module
|
||||
The model you want to check accuracy on
|
||||
|
||||
Returns:
|
||||
acc: float
|
||||
The accuracy of the model on the dataset given by the loader
|
||||
"""
|
||||
|
||||
num_correct = 0
|
||||
num_samples = 0
|
||||
model.eval()
|
||||
|
||||
# We don't need to keep track of gradients here so we wrap it in torch.no_grad()
|
||||
with torch.no_grad():
|
||||
# Loop through the data
|
||||
for x, y in loader:
|
||||
|
||||
# Move data to device
|
||||
x = x.to(device=device)
|
||||
y = y.to(device=device)
|
||||
|
||||
# Get to correct shape
|
||||
x = x.reshape(x.shape[0], -1)
|
||||
|
||||
# Forward pass
|
||||
scores = model(x)
|
||||
_, predictions = scores.max(1)
|
||||
|
||||
# Check how many we got correct
|
||||
num_correct += (predictions == y).sum()
|
||||
|
||||
# Keep track of number of samples
|
||||
num_samples += predictions.size(0)
|
||||
|
||||
model.train()
|
||||
return num_correct/num_samples
|
||||
|
||||
|
||||
# Check accuracy on training & test to see how good our model
|
||||
print(f"Accuracy on training set: {check_accuracy(train_loader, model)*100:.2f}")
|
||||
print(f"Accuracy on test set: {check_accuracy(test_loader, model)*100:.2f}")
|
||||
print(f"Accuracy on test set: {check_accuracy(test_loader, model)*100:.2f}")
|
||||
Reference in New Issue
Block a user