mirror of
https://github.com/aladdinpersson/Machine-Learning-Collection.git
synced 2026-02-21 11:18:01 +00:00
Initial commit
This commit is contained in:
155
ML/Pytorch/Basics/pytorch_transforms.py
Normal file
155
ML/Pytorch/Basics/pytorch_transforms.py
Normal file
@@ -0,0 +1,155 @@
|
||||
"""
|
||||
Shows a small example of how to use transformations (perhaps unecessarily many)
|
||||
on CIFAR10 dataset and training on a small CNN toy network.
|
||||
|
||||
Video explanation: https://youtu.be/Zvd276j9sZ8
|
||||
Got any questions leave a comment I'm pretty good at responding on youtube
|
||||
|
||||
Programmed by Aladdin Persson <aladdin.persson at hotmail dot com>
|
||||
* 2020-04-09 Initial coding
|
||||
"""
|
||||
|
||||
# Imports
|
||||
import torch
|
||||
import torch.nn as nn # All neural network modules, nn.Linear, nn.Conv2d, BatchNorm, Loss functions
|
||||
import torch.optim as optim # For all Optimization algorithms, SGD, Adam, etc.
|
||||
import torch.nn.functional as F # All functions that don't have any parameters
|
||||
from torch.utils.data import (
|
||||
DataLoader,
|
||||
) # Gives easier dataset managment and creates mini batches
|
||||
import torchvision.datasets as datasets # Has standard datasets we can import in a nice way
|
||||
import torchvision.transforms as transforms # Transformations we can perform on our dataset
|
||||
|
||||
# Simple CNN
|
||||
class CNN(nn.Module):
|
||||
def __init__(self, in_channels, num_classes):
|
||||
super(CNN, self).__init__()
|
||||
self.conv1 = nn.Conv2d(
|
||||
in_channels=in_channels,
|
||||
out_channels=8,
|
||||
kernel_size=(3, 3),
|
||||
stride=(1, 1),
|
||||
padding=(1, 1),
|
||||
)
|
||||
self.pool = nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2))
|
||||
self.conv2 = nn.Conv2d(
|
||||
in_channels=8,
|
||||
out_channels=16,
|
||||
kernel_size=(3, 3),
|
||||
stride=(1, 1),
|
||||
padding=(1, 1),
|
||||
)
|
||||
self.fc1 = nn.Linear(16 * 8 * 8, num_classes)
|
||||
|
||||
def forward(self, x):
|
||||
x = F.relu(self.conv1(x))
|
||||
x = self.pool(x)
|
||||
x = F.relu(self.conv2(x))
|
||||
x = self.pool(x)
|
||||
x = x.reshape(x.shape[0], -1)
|
||||
x = self.fc1(x)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
# Set device
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
|
||||
# Hyperparameters
|
||||
learning_rate = 1e-4
|
||||
batch_size = 64
|
||||
num_epochs = 5
|
||||
|
||||
|
||||
# Load pretrain model & modify it
|
||||
model = CNN(in_channels=3, num_classes=10)
|
||||
model.classifier = nn.Sequential(nn.Linear(512, 100), nn.ReLU(), nn.Linear(100, 10))
|
||||
model.to(device)
|
||||
|
||||
# Load Data
|
||||
my_transforms = transforms.Compose(
|
||||
[ # Compose makes it possible to have many transforms
|
||||
transforms.Resize((36, 36)), # Resizes (32,32) to (36,36)
|
||||
transforms.RandomCrop((32, 32)), # Takes a random (32,32) crop
|
||||
transforms.ColorJitter(brightness=0.5), # Change brightness of image
|
||||
transforms.RandomRotation(
|
||||
degrees=45
|
||||
), # Perhaps a random rotation from -45 to 45 degrees
|
||||
transforms.RandomHorizontalFlip(
|
||||
p=0.5
|
||||
), # Flips the image horizontally with probability 0.5
|
||||
transforms.RandomVerticalFlip(
|
||||
p=0.05
|
||||
), # Flips image vertically with probability 0.05
|
||||
transforms.RandomGrayscale(p=0.2), # Converts to grayscale with probability 0.2
|
||||
transforms.ToTensor(), # Finally converts PIL image to tensor so we can train w. pytorch
|
||||
transforms.Normalize(
|
||||
mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]
|
||||
), # Note: these values aren't optimal
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
train_dataset = datasets.CIFAR10(
|
||||
root="dataset/", train=True, transform=my_transforms, download=True
|
||||
)
|
||||
train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
|
||||
|
||||
# Loss and optimizer
|
||||
criterion = nn.CrossEntropyLoss()
|
||||
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
|
||||
|
||||
# Train Network
|
||||
for epoch in range(num_epochs):
|
||||
losses = []
|
||||
|
||||
for batch_idx, (data, targets) in enumerate(train_loader):
|
||||
# Get data to cuda if possible
|
||||
data = data.to(device=device)
|
||||
targets = targets.to(device=device)
|
||||
|
||||
# forward
|
||||
scores = model(data)
|
||||
loss = criterion(scores, targets)
|
||||
|
||||
losses.append(loss.item())
|
||||
# backward
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
|
||||
# gradient descent or adam step
|
||||
optimizer.step()
|
||||
|
||||
print(f"Cost at epoch {epoch} is {sum(losses)/len(losses):.5f}")
|
||||
|
||||
# Check accuracy on training & test to see how good our model
|
||||
|
||||
|
||||
def check_accuracy(loader, model):
|
||||
if loader.dataset.train:
|
||||
print("Checking accuracy on training data")
|
||||
else:
|
||||
print("Checking accuracy on test data")
|
||||
|
||||
num_correct = 0
|
||||
num_samples = 0
|
||||
model.eval()
|
||||
|
||||
with torch.no_grad():
|
||||
for x, y in loader:
|
||||
x = x.to(device=device)
|
||||
y = y.to(device=device)
|
||||
|
||||
scores = model(x)
|
||||
_, predictions = scores.max(1)
|
||||
num_correct += (predictions == y).sum()
|
||||
num_samples += predictions.size(0)
|
||||
|
||||
print(
|
||||
f"Got {num_correct} / {num_samples} with accuracy {float(num_correct)/float(num_samples)*100:.2f}"
|
||||
)
|
||||
|
||||
model.train()
|
||||
|
||||
|
||||
check_accuracy(train_loader, model)
|
||||
Reference in New Issue
Block a user