mirror of
https://github.com/aladdinpersson/Machine-Learning-Collection.git
synced 2026-02-20 13:50:41 +00:00
156 lines
4.7 KiB
Python
156 lines
4.7 KiB
Python
"""
|
|
Shows a small example of how to use transformations (perhaps unecessarily many)
|
|
on CIFAR10 dataset and training on a small CNN toy network.
|
|
|
|
Video explanation: https://youtu.be/Zvd276j9sZ8
|
|
Got any questions leave a comment I'm pretty good at responding on youtube
|
|
|
|
Programmed by Aladdin Persson <aladdin.persson at hotmail dot com>
|
|
* 2020-04-09 Initial coding
|
|
"""
|
|
|
|
# Imports
|
|
import torch
|
|
import torch.nn as nn # All neural network modules, nn.Linear, nn.Conv2d, BatchNorm, Loss functions
|
|
import torch.optim as optim # For all Optimization algorithms, SGD, Adam, etc.
|
|
import torch.nn.functional as F # All functions that don't have any parameters
|
|
from torch.utils.data import (
|
|
DataLoader,
|
|
) # Gives easier dataset managment and creates mini batches
|
|
import torchvision.datasets as datasets # Has standard datasets we can import in a nice way
|
|
import torchvision.transforms as transforms # Transformations we can perform on our dataset
|
|
|
|
# Simple CNN
|
|
class CNN(nn.Module):
|
|
def __init__(self, in_channels, num_classes):
|
|
super(CNN, self).__init__()
|
|
self.conv1 = nn.Conv2d(
|
|
in_channels=in_channels,
|
|
out_channels=8,
|
|
kernel_size=(3, 3),
|
|
stride=(1, 1),
|
|
padding=(1, 1),
|
|
)
|
|
self.pool = nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2))
|
|
self.conv2 = nn.Conv2d(
|
|
in_channels=8,
|
|
out_channels=16,
|
|
kernel_size=(3, 3),
|
|
stride=(1, 1),
|
|
padding=(1, 1),
|
|
)
|
|
self.fc1 = nn.Linear(16 * 8 * 8, num_classes)
|
|
|
|
def forward(self, x):
|
|
x = F.relu(self.conv1(x))
|
|
x = self.pool(x)
|
|
x = F.relu(self.conv2(x))
|
|
x = self.pool(x)
|
|
x = x.reshape(x.shape[0], -1)
|
|
x = self.fc1(x)
|
|
|
|
return x
|
|
|
|
|
|
# Set device
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
# Hyperparameters
|
|
learning_rate = 1e-4
|
|
batch_size = 64
|
|
num_epochs = 5
|
|
|
|
|
|
# Load pretrain model & modify it
|
|
model = CNN(in_channels=3, num_classes=10)
|
|
model.classifier = nn.Sequential(nn.Linear(512, 100), nn.ReLU(), nn.Linear(100, 10))
|
|
model.to(device)
|
|
|
|
# Load Data
|
|
my_transforms = transforms.Compose(
|
|
[ # Compose makes it possible to have many transforms
|
|
transforms.Resize((36, 36)), # Resizes (32,32) to (36,36)
|
|
transforms.RandomCrop((32, 32)), # Takes a random (32,32) crop
|
|
transforms.ColorJitter(brightness=0.5), # Change brightness of image
|
|
transforms.RandomRotation(
|
|
degrees=45
|
|
), # Perhaps a random rotation from -45 to 45 degrees
|
|
transforms.RandomHorizontalFlip(
|
|
p=0.5
|
|
), # Flips the image horizontally with probability 0.5
|
|
transforms.RandomVerticalFlip(
|
|
p=0.05
|
|
), # Flips image vertically with probability 0.05
|
|
transforms.RandomGrayscale(p=0.2), # Converts to grayscale with probability 0.2
|
|
transforms.ToTensor(), # Finally converts PIL image to tensor so we can train w. pytorch
|
|
transforms.Normalize(
|
|
mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]
|
|
), # Note: these values aren't optimal
|
|
]
|
|
)
|
|
|
|
|
|
train_dataset = datasets.CIFAR10(
|
|
root="dataset/", train=True, transform=my_transforms, download=True
|
|
)
|
|
train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
|
|
|
|
# Loss and optimizer
|
|
criterion = nn.CrossEntropyLoss()
|
|
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
|
|
|
|
# Train Network
|
|
for epoch in range(num_epochs):
|
|
losses = []
|
|
|
|
for batch_idx, (data, targets) in enumerate(train_loader):
|
|
# Get data to cuda if possible
|
|
data = data.to(device=device)
|
|
targets = targets.to(device=device)
|
|
|
|
# forward
|
|
scores = model(data)
|
|
loss = criterion(scores, targets)
|
|
|
|
losses.append(loss.item())
|
|
# backward
|
|
optimizer.zero_grad()
|
|
loss.backward()
|
|
|
|
# gradient descent or adam step
|
|
optimizer.step()
|
|
|
|
print(f"Cost at epoch {epoch} is {sum(losses)/len(losses):.5f}")
|
|
|
|
# Check accuracy on training & test to see how good our model
|
|
|
|
|
|
def check_accuracy(loader, model):
|
|
if loader.dataset.train:
|
|
print("Checking accuracy on training data")
|
|
else:
|
|
print("Checking accuracy on test data")
|
|
|
|
num_correct = 0
|
|
num_samples = 0
|
|
model.eval()
|
|
|
|
with torch.no_grad():
|
|
for x, y in loader:
|
|
x = x.to(device=device)
|
|
y = y.to(device=device)
|
|
|
|
scores = model(x)
|
|
_, predictions = scores.max(1)
|
|
num_correct += (predictions == y).sum()
|
|
num_samples += predictions.size(0)
|
|
|
|
print(
|
|
f"Got {num_correct} / {num_samples} with accuracy {float(num_correct)/float(num_samples)*100:.2f}"
|
|
)
|
|
|
|
model.train()
|
|
|
|
|
|
check_accuracy(train_loader, model)
|