added_mcts_and_metrics

This commit is contained in:
dino
2022-09-29 11:18:12 +02:00
parent 6c792599cf
commit 088bdb63e9
3 changed files with 568 additions and 0 deletions

View File

@@ -0,0 +1,228 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "18676180",
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import ipywidgets as widgets\n",
"from tqdm import tqdm\n",
"import random\n",
"import matplotlib.pyplot as plt"
]
},
{
"cell_type": "code",
"execution_count": 254,
"id": "d69c70f2",
"metadata": {},
"outputs": [],
"source": [
"class MCTSNode:\n",
" def __init__(self, state, parent_node):\n",
" self.state = state\n",
" self.parent_node = parent_node\n",
" self.total_visits = 0\n",
" self.total_score = 0\n",
" self.children_nodes = []\n",
" self.player = self.check_player(state)\n",
" self.terminate_state = False\n",
" self.all_children_nodes = False\n",
"\n",
" def check_player(self, state):\n",
" if np.sum(state==1) > np.sum(state==2):\n",
" return 2\n",
" else:\n",
" return 1\n",
"\n",
"class MCTS:\n",
" def __init__(self, exploration_constant = 2):\n",
" self.exploration_constant = exploration_constant\n",
"\n",
" def is_terminal(self, board):\n",
" return not np.any(board == 0)\n",
"\n",
" def is_win(self, state, player):\n",
" col_win = (np.sum(state == player, axis=0) == 3).any()\n",
" row_win = (np.sum(state == player, axis=1) == 3).any()\n",
" diagonal_win = np.trace(state == player) == 3\n",
" opposite_diagonal = np.trace(np.fliplr(state) == player) == 3\n",
" return col_win or row_win or diagonal_win or opposite_diagonal\n",
"\n",
" def select(self, curr_node, should_explore=True):\n",
" while not is_terminal(curr_node.state) and not (self.is_win(curr_node.state, 1) or self.is_win(curr_node.state, 2)):\n",
" if curr_node.all_children_nodes:\n",
" highest_value = -float(\"inf\")\n",
" chosen_child = None\n",
"\n",
" # loop all children nodes and take the best one according to heuristic\n",
" for child in curr_node.children_nodes:\n",
" # compute UCB1 score\n",
" child_val = (child.total_score/child.total_visits) + should_explore*self.exploration_constant*np.sqrt(np.log(curr_node.total_visits)/child.total_visits)\n",
"\n",
" # if it has highest value then store it as the chosen child from this step\n",
" if child_val > highest_value:\n",
" highest_value = child_val\n",
" chosen_child = child\n",
"\n",
" # choose highest value move\n",
" return chosen_child\n",
"\n",
" else:\n",
" # if not all children nodes accessible then expand the node first\n",
" return self.expand(curr_node)\n",
"\n",
" print(\"should never come here\")\n",
"\n",
" def expand(self, curr_node):\n",
" states = self.generate_next_states(curr_node)\n",
"\n",
" for state in states:\n",
" # unroll children states, and ensure we do not expand to a state we have \n",
" # already expanded to in a previous iteration\n",
" if str(state) not in [str(b.state) for b in curr_node.children_nodes]:\n",
" child_node = MCTSNode(state, curr_node)\n",
" curr_node.children_nodes.append(child_node)\n",
" \n",
" # if the num children nodes equal the amount of possible next states\n",
" # we have explored all child nodes for this state\n",
" if len(states) == len(curr_node.children_nodes):\n",
" curr_node.all_children_nodes = True\n",
"\n",
" return child_node\n",
"\n",
"\n",
" def simulate(self, curr_node, computer_playing):\n",
" opponent = 1 if computer_playing == 2 else 1\n",
" \n",
" while not is_terminal(curr_node.state) and not (self.is_win(curr_node.state, 1) or self.is_win(curr_node.state, 2)):\n",
" next_states = self.generate_next_states(curr_node)\n",
" curr_node = MCTSNode(next_states[random.randint(0, len(next_states) - 1)], curr_node)\n",
" \n",
" if self.is_win(curr_node.state, player=computer_playing):\n",
" return 1\n",
" elif self.is_win(curr_node.state, player=opponent):\n",
" return -1\n",
" else:\n",
" return 0\n",
"\n",
" \n",
" def backpropagate(self, node, score):\n",
" while node:\n",
" node.total_visits += 1\n",
" node.total_score += score\n",
" node = node.parent_node\n",
" \n",
" def generate_next_states(self, curr_node):\n",
" player = curr_node.player\n",
" curr_state = curr_node.state\n",
" next_states = []\n",
" for i in range(3):\n",
" for j in range(3):\n",
" if curr_state[i,j] == 0:\n",
" to_append = np.copy(curr_state)\n",
" to_append[i,j] = player\n",
" next_states.append(to_append)\n",
" return next_states\n",
"\n",
"\n",
" def get_move(self, root, num_iterations=1000):\n",
" for it in range(num_iterations):\n",
" curr_node = self.select(root)\n",
" obtained_value = self.simulate(curr_node, root.player)\n",
" self.backpropagate(curr_node, obtained_value)\n",
" \n",
" chosen_move = self.select(root, should_explore=False)\n",
" return chosen_move"
]
},
{
"cell_type": "code",
"execution_count": 263,
"id": "36e39228",
"metadata": {
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Row and column to place with ,1,1\n",
"[[0. 0. 0.]\n",
" [0. 1. 0.]\n",
" [0. 0. 2.]]\n",
"Row and column to place with ,0,0\n",
"[[1. 0. 0.]\n",
" [0. 1. 0.]\n",
" [2. 0. 2.]]\n",
"Row and column to place with ,2,1\n",
"[[1. 2. 0.]\n",
" [0. 1. 0.]\n",
" [2. 1. 2.]]\n",
"Row and column to place with ,1,2\n",
"[[1. 2. 0.]\n",
" [2. 1. 1.]\n",
" [2. 1. 2.]]\n",
"Row and column to place with ,0,2\n",
"should never come here\n"
]
},
{
"ename": "AttributeError",
"evalue": "'NoneType' object has no attribute 'state'",
"output_type": "error",
"traceback": [
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[1;31mAttributeError\u001b[0m Traceback (most recent call last)",
"\u001b[1;32m~\\AppData\\Local\\Temp/ipykernel_15720/2518229713.py\u001b[0m in \u001b[0;36m<module>\u001b[1;34m\u001b[0m\n\u001b[0;32m 9\u001b[0m \u001b[0mnext_node\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mMCTSNode\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mstate\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mroot\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 10\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 11\u001b[1;33m \u001b[0mroot\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mmc\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mget_move\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mnext_node\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 12\u001b[0m \u001b[0mprint\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mroot\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mstate\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 13\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n",
"\u001b[1;32m~\\AppData\\Local\\Temp/ipykernel_15720/416212796.py\u001b[0m in \u001b[0;36mget_move\u001b[1;34m(self, root, num_iterations)\u001b[0m\n\u001b[0;32m 110\u001b[0m \u001b[1;32mfor\u001b[0m \u001b[0mit\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mrange\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mnum_iterations\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 111\u001b[0m \u001b[0mcurr_node\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mselect\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mroot\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 112\u001b[1;33m \u001b[0mobtained_value\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0msimulate\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mcurr_node\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mroot\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mplayer\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 113\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mbackpropagate\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mcurr_node\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mobtained_value\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 114\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n",
"\u001b[1;32m~\\AppData\\Local\\Temp/ipykernel_15720/416212796.py\u001b[0m in \u001b[0;36msimulate\u001b[1;34m(self, curr_node, computer_playing)\u001b[0m\n\u001b[0;32m 76\u001b[0m \u001b[0mopponent\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;36m1\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mcomputer_playing\u001b[0m \u001b[1;33m==\u001b[0m \u001b[1;36m2\u001b[0m \u001b[1;32melse\u001b[0m \u001b[1;36m1\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 77\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 78\u001b[1;33m \u001b[1;32mwhile\u001b[0m \u001b[1;32mnot\u001b[0m \u001b[0mis_terminal\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mcurr_node\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mstate\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;32mand\u001b[0m \u001b[1;32mnot\u001b[0m \u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mis_win\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mcurr_node\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mstate\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;36m1\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;32mor\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mis_win\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mcurr_node\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mstate\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;36m2\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 79\u001b[0m \u001b[0mnext_states\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mgenerate_next_states\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mcurr_node\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 80\u001b[0m \u001b[0mcurr_node\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mMCTSNode\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mnext_states\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mrandom\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mrandint\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;36m0\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mlen\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mnext_states\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;33m-\u001b[0m \u001b[1;36m1\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mcurr_node\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
"\u001b[1;31mAttributeError\u001b[0m: 'NoneType' object has no attribute 'state'"
]
}
],
"source": [
"a = np.zeros((3,3))\n",
"root = MCTSNode(a, None)\n",
"mc = MCTS()\n",
"\n",
"for i in range(9):\n",
" row_col = input(\"Row and column to place with ,\").split(\",\")\n",
" state = np.copy(root.state)\n",
" state[int(row_col[0]), int(row_col[1])] = 1\n",
" next_node = MCTSNode(state, root)\n",
" \n",
" root = mc.get_move(next_node)\n",
" print(root.state)\n",
"\n",
"print(\"Final: {root.state}\")\n",
" "
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.5"
}
},
"nbformat": 4,
"nbformat_minor": 5
}