mirror of
https://github.com/aladdinpersson/Machine-Learning-Collection.git
synced 2026-02-21 11:18:01 +00:00
update mixed precision with comments
This commit is contained in:
@@ -1,9 +1,23 @@
|
|||||||
|
"""
|
||||||
|
Example code of how to use mixed precision training with PyTorch. In this
|
||||||
|
case with a (very) small and simple CNN training on MNIST dataset. This
|
||||||
|
example is based on the official PyTorch documentation on mixed precision
|
||||||
|
training.
|
||||||
|
|
||||||
|
Programmed by Aladdin Persson <aladdin.persson at hotmail dot com>
|
||||||
|
* 2020-04-10 Initial programming
|
||||||
|
* 2022-12-19 Updated comments, made sure it works with latest PyTorch
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
# Imports
|
# Imports
|
||||||
import torch
|
import torch
|
||||||
import torch.nn as nn # All neural network modules, nn.Linear, nn.Conv2d, BatchNorm, Loss functions
|
import torch.nn as nn # All neural network modules, nn.Linear, nn.Conv2d, BatchNorm, Loss functions
|
||||||
import torch.optim as optim # For all Optimization algorithms, SGD, Adam, etc.
|
import torch.optim as optim # For all Optimization algorithms, SGD, Adam, etc.
|
||||||
import torch.nn.functional as F # All functions that don't have any parameters
|
import torch.nn.functional as F # All functions that don't have any parameters
|
||||||
from torch.utils.data import DataLoader # Gives easier dataset managment and creates mini batches
|
from torch.utils.data import (
|
||||||
|
DataLoader,
|
||||||
|
) # Gives easier dataset managment and creates mini batches
|
||||||
import torchvision.datasets as datasets # Has standard datasets we can import in a nice way
|
import torchvision.datasets as datasets # Has standard datasets we can import in a nice way
|
||||||
import torchvision.transforms as transforms # Transformations we can perform on our dataset
|
import torchvision.transforms as transforms # Transformations we can perform on our dataset
|
||||||
|
|
||||||
@@ -12,9 +26,21 @@ import torchvision.transforms as transforms # Transformations we can perform on
|
|||||||
class CNN(nn.Module):
|
class CNN(nn.Module):
|
||||||
def __init__(self, in_channels=1, num_classes=10):
|
def __init__(self, in_channels=1, num_classes=10):
|
||||||
super(CNN, self).__init__()
|
super(CNN, self).__init__()
|
||||||
self.conv1 = nn.Conv2d(in_channels=1, out_channels=420, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
self.conv1 = nn.Conv2d(
|
||||||
|
in_channels=1,
|
||||||
|
out_channels=420,
|
||||||
|
kernel_size=(3, 3),
|
||||||
|
stride=(1, 1),
|
||||||
|
padding=(1, 1),
|
||||||
|
)
|
||||||
self.pool = nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2))
|
self.pool = nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2))
|
||||||
self.conv2 = nn.Conv2d(in_channels=420, out_channels=1000, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
self.conv2 = nn.Conv2d(
|
||||||
|
in_channels=420,
|
||||||
|
out_channels=1000,
|
||||||
|
kernel_size=(3, 3),
|
||||||
|
stride=(1, 1),
|
||||||
|
padding=(1, 1),
|
||||||
|
)
|
||||||
self.fc1 = nn.Linear(1000 * 7 * 7, num_classes)
|
self.fc1 = nn.Linear(1000 * 7 * 7, num_classes)
|
||||||
|
|
||||||
def forward(self, x):
|
def forward(self, x):
|
||||||
@@ -29,7 +55,8 @@ class CNN(nn.Module):
|
|||||||
|
|
||||||
|
|
||||||
# Set device
|
# Set device
|
||||||
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||||
|
assert device == "cuda", "GPU not available"
|
||||||
|
|
||||||
# Hyperparameters
|
# Hyperparameters
|
||||||
in_channel = 1
|
in_channel = 1
|
||||||
@@ -39,9 +66,13 @@ batch_size = 100
|
|||||||
num_epochs = 5
|
num_epochs = 5
|
||||||
|
|
||||||
# Load Data
|
# Load Data
|
||||||
train_dataset = datasets.MNIST(root='dataset/', train=True, transform=transforms.ToTensor(), download=True)
|
train_dataset = datasets.MNIST(
|
||||||
|
root="dataset/", train=True, transform=transforms.ToTensor(), download=True
|
||||||
|
)
|
||||||
train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
|
train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
|
||||||
test_dataset = datasets.MNIST(root='dataset/', train=False, transform=transforms.ToTensor(), download=True)
|
test_dataset = datasets.MNIST(
|
||||||
|
root="dataset/", train=False, transform=transforms.ToTensor(), download=True
|
||||||
|
)
|
||||||
test_loader = DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=True)
|
test_loader = DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=True)
|
||||||
|
|
||||||
# Initialize network
|
# Initialize network
|
||||||
@@ -89,10 +120,12 @@ def check_accuracy(loader, model):
|
|||||||
num_correct += (predictions == y).sum()
|
num_correct += (predictions == y).sum()
|
||||||
num_samples += predictions.size(0)
|
num_samples += predictions.size(0)
|
||||||
|
|
||||||
print(f'Got {num_correct} / {num_samples} with accuracy {float(num_correct) / float(num_samples) * 100:.2f}')
|
print(
|
||||||
|
f"Got {num_correct} / {num_samples} with accuracy {float(num_correct) / float(num_samples) * 100:.2f}"
|
||||||
|
)
|
||||||
|
|
||||||
model.train()
|
model.train()
|
||||||
|
|
||||||
|
|
||||||
check_accuracy(train_loader, model)
|
check_accuracy(train_loader, model)
|
||||||
check_accuracy(test_loader, model)
|
check_accuracy(test_loader, model)
|
||||||
|
|||||||
Reference in New Issue
Block a user