update mixed precision with comments

This commit is contained in:
Aladdin Persson
2022-12-19 16:17:47 +01:00
parent 8f12620cef
commit 058742e581

View File

@@ -1,9 +1,23 @@
"""
Example code of how to use mixed precision training with PyTorch. In this
case with a (very) small and simple CNN training on MNIST dataset. This
example is based on the official PyTorch documentation on mixed precision
training.
Programmed by Aladdin Persson <aladdin.persson at hotmail dot com>
* 2020-04-10 Initial programming
* 2022-12-19 Updated comments, made sure it works with latest PyTorch
"""
# Imports
import torch
import torch.nn as nn # All neural network modules, nn.Linear, nn.Conv2d, BatchNorm, Loss functions
import torch.optim as optim # For all Optimization algorithms, SGD, Adam, etc.
import torch.nn.functional as F # All functions that don't have any parameters
from torch.utils.data import DataLoader # Gives easier dataset managment and creates mini batches
from torch.utils.data import (
DataLoader,
) # Gives easier dataset managment and creates mini batches
import torchvision.datasets as datasets # Has standard datasets we can import in a nice way
import torchvision.transforms as transforms # Transformations we can perform on our dataset
@@ -12,9 +26,21 @@ import torchvision.transforms as transforms # Transformations we can perform on
class CNN(nn.Module):
def __init__(self, in_channels=1, num_classes=10):
super(CNN, self).__init__()
self.conv1 = nn.Conv2d(in_channels=1, out_channels=420, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
self.conv1 = nn.Conv2d(
in_channels=1,
out_channels=420,
kernel_size=(3, 3),
stride=(1, 1),
padding=(1, 1),
)
self.pool = nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2))
self.conv2 = nn.Conv2d(in_channels=420, out_channels=1000, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
self.conv2 = nn.Conv2d(
in_channels=420,
out_channels=1000,
kernel_size=(3, 3),
stride=(1, 1),
padding=(1, 1),
)
self.fc1 = nn.Linear(1000 * 7 * 7, num_classes)
def forward(self, x):
@@ -29,7 +55,8 @@ class CNN(nn.Module):
# Set device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
assert device == "cuda", "GPU not available"
# Hyperparameters
in_channel = 1
@@ -39,9 +66,13 @@ batch_size = 100
num_epochs = 5
# Load Data
train_dataset = datasets.MNIST(root='dataset/', train=True, transform=transforms.ToTensor(), download=True)
train_dataset = datasets.MNIST(
root="dataset/", train=True, transform=transforms.ToTensor(), download=True
)
train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
test_dataset = datasets.MNIST(root='dataset/', train=False, transform=transforms.ToTensor(), download=True)
test_dataset = datasets.MNIST(
root="dataset/", train=False, transform=transforms.ToTensor(), download=True
)
test_loader = DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=True)
# Initialize network
@@ -89,10 +120,12 @@ def check_accuracy(loader, model):
num_correct += (predictions == y).sum()
num_samples += predictions.size(0)
print(f'Got {num_correct} / {num_samples} with accuracy {float(num_correct) / float(num_samples) * 100:.2f}')
print(
f"Got {num_correct} / {num_samples} with accuracy {float(num_correct) / float(num_samples) * 100:.2f}"
)
model.train()
check_accuracy(train_loader, model)
check_accuracy(test_loader, model)
check_accuracy(test_loader, model)