add CKIM2024 cyber incident case study

This commit is contained in:
Frank Xu
2024-07-23 10:29:19 -04:00
parent 7fa7f44e92
commit 037b7a29c1

View File

@@ -31,12 +31,12 @@ By fostering a collaborative learning environment, this tutorial aims to empower
- Introduction
- [Forensic evidence entity recognition (hands-on lab)](#forensic-evidence-analysis)
- [Evidence entity recognition](PhishingAttack\PhishingAttackScenarioDemo\01_evidence_entity_recognition.ipynb)
- [Visualize evidence and their relations](PhishingAttackScenarioDemo\02_evidence_knowledge_dot_generator.ipynb)
- [Evidence entity recognition](PhishingAttack/PhishingAttackScenarioDemo/01_evidence_entity_recognition.ipynb)
- [Visualize evidence and their relations](PhishingAttack/PhishingAttackScenarioDemo/02_evidence_knowledge_dot_generator.ipynb)
- [Evidence knowledge graphs reconstruction (hands-on lab)](#forensic-evidence-analysis)
- [Construct a knowledge graph in STIX (zero-shot)](PhishingAttackScenarioDemo\03_evidence_stix_zeroshot.ipynb)
- [Construct a knowledge graph in STIX (one-shot)](PhishingAttackScenarioDemo\04_evidence_stix_oneshot.ipynb)
- [Compare one-shot vs. zero-shot](PhishingAttackScenarioDemo\05_evidence_stix_dot_generator.ipynb)
- [Construct a knowledge graph in STIX (zero-shot)](PhishingAttack/PhishingAttackScenarioDemo/03_evidence_stix_zeroshot.ipynb)
- [Construct a knowledge graph in STIX (one-shot)](PhishingAttack/PhishingAttackScenarioDemo/04_evidence_stix_oneshot.ipynb)
- [Compare one-shot vs. zero-shot](PhishingAttack/PhishingAttackScenarioDemo/05_evidence_stix_dot_generator.ipynb)
- Profiling suspect based on browser history (hands-on lab)
- [Political insights analysis based on Hillary's leaked Emails (hands-on lab)](#political-insight-analysis-leveraging-llms)
- Challenges and Limitations of Leveraging LLM in Digital Forensics
@@ -48,7 +48,7 @@ By fostering a collaborative learning environment, this tutorial aims to empower
The cyber incident report documents a conversation between an IT Security Specialist and an Employee about an email phishing attack. We use LLMs to identify evidence entities and relationships and to construct digital forensic knowledge graphs.
Here is an example of a reconstructed digital forensics knowledge graph: <img src="PhishingAttackScenarioDemo\05_output_viz.png">
Here is an example of a reconstructed digital forensics knowledge graph: <img src="PhishingAttack/PhishingAttackScenarioDemo/05_output_viz.png">
### Political Insight Analysis Leveraging LLMs
@@ -62,7 +62,7 @@ Our dataset: [a set of email summaries](/AI4Forensics/CKIM2024/HillaryEmails/res
Our results: [Code in Jupyter Notebook](/AI4Forensics/CKIM2024/HillaryEmails/email_analysis_political_insight.ipynb).
Here are some political insights based on the leaked email summaries obtained from Hillary Clinton's private email server that are related to Israel: <img src="/AI4Forensics/CKIM2024/HillaryEmails/political_insight_2024-05-31_10-29-52.jpg">
Here are some political insights based on the leaked email summaries obtained from Hillary Clinton's private email server that are related to Israel: <img src="HillaryEmails/political_insight_2024-05-31_10-29-52.jpg">
---