2021-02-18 21:40:06 +00:00
2021-01-25 14:30:42 +00:00
2021-02-02 20:22:59 +00:00
2021-02-11 21:02:02 +00:00
2021-02-16 19:35:31 +00:00
2021-02-18 21:40:06 +00:00
2021-01-18 20:47:18 +00:00
2021-01-18 20:47:18 +00:00
2021-01-18 20:47:18 +00:00
2021-01-18 20:47:18 +00:00
2021-01-18 20:47:18 +00:00
2021-01-18 20:47:18 +00:00
2021-01-18 20:47:18 +00:00
2021-01-18 20:47:18 +00:00
2021-02-03 07:11:56 +00:00
2021-01-22 09:12:22 +00:00
2021-01-18 20:47:18 +00:00
2021-01-18 20:47:18 +00:00
2021-01-18 20:47:18 +00:00
2021-02-14 16:22:56 +00:00
2021-02-14 16:22:56 +00:00
2021-02-14 16:22:56 +00:00
2021-02-09 07:29:05 +00:00
2021-02-09 07:29:05 +00:00
2021-01-30 08:40:12 +00:00

esecurity

Applied Cryptography and Trust Module

Outline details

Some of the associated material will be hosted on this site here

This repository contains the code and labs for the module. Open up your Ubuntu instance, and downloaded from:

git clone https://github.com/billbuchanan/appliedcrypto.git

If you need to update the code, go into the appliedcrypto folder, and run:

git pull

Make your own VM:

  • sudo apt install python3-pip
  • pip3 install pycrytodome
  • pip3 install padding
  • pip3 install libnum
  • pip3 install passlib

The VM for the module can be downloaded here

Draft Timetable

The following is the draft timetable:

No Date Subject Lab
2 29 Jan 2021 Ciphers and Fundamentals Unit Lab [Link] Demo [Link]
3 5 Feb 2021 Symmetric Key Unit Lab [Link] Demo [Link]
4 12 Feb 2021 Hashing and MAC Unit Lab [Link]
5 19 Feb 2021 Asymmetric (Public) Key Unit Lab [Link]
6 26 Feb 2021 Key Exchange Unit Lab [Link]
7 5 Mar 2021 Guest lecture Mini-project/Coursework [Link]
8 12 Mar 2021 Trust and Digital Certificates Unit Lab [Link]
9 19 Mar 2021 Test (Units 1-5) [Study guide]
10 26 Mar 2021 Tunnelling Unit Lab [Link]
11 23 Apr 2021 Blockchain Unit Lab [Link]
12 30 Apr 2021 Future Cryptography Unit Lab [Link]
13 7 May 2021 Tokens, Authorization and Docker Unit Lab [Link]
14 14 May 2021 Trusted Hosts Unit
15 21 May 2021 Coursework Hand-in [Draft]
Description
Languages
Jupyter Notebook 78.2%
JavaScript 7%
HTML 6.6%
Python 5.1%
CSS 2.2%
Other 0.8%