mirror of
https://github.com/billbuchanan/appliedcrypto.git
synced 2026-02-20 13:50:42 +00:00
4.8 KiB
4.8 KiB
A.6
print 0x43 | 0x21
print 0x43 & 0x21
print 0x43 ^ 0x21
A.7
val1=93
print "Dec:\t",val1
print "Bin:\t",bin(val1)
print "Hex:\t",hex(val1)
print "Oct:\t",oct(val1)
print "Char:\t",chr(val1)
A.8
val=93
console.log(val.toString(2))
console.log(val.toString(16))
console.log(val.toString(8))
console.log(String.fromCharCode(val))
A.9
import base64
str=”crypto”
print base64.b64encode(val)
A.10
import sys
val1="00110101"
if (len(sys.argv)>1):
val1=sys.argv[1]
print "Binary form: \t\t",val1
dec=int(val1,2)
print "Decimal form: \t\t",dec,"\t",bin(dec)[2:10].rjust(8,'0')
res=(dec << 1) & 0xff
print "Shift left (1):\t",res,"\t",bin(res)[2:10].rjust(8,'0')
res=(dec << 2) & 0xff
print "Shift left (2):\t",res,"\t",bin(res)[2:].rjust(8,'0')
res=(dec >> 1) & 0xff
print "Shift right (1):\t",res,"\t",bin(res)[2:10].rjust(8,'0')
res=(dec >> 2) & 0xff
print "Shift right (2):\t",res,"\t",bin(res)[2:10].rjust(8,'0')
B.1
def gcd(a, b):
while( b != 0 ):
Remainder = a % b;
a = b;
b = Remainder;
return a;
g = gcd(54,8)
print g
C.3
message = raw_input('Enter message: ')
e = raw_input('Enter exponent: ')
p = raw_input('Enter prime ')
cipher = (int(message) ** int(e)) % int(p)
print cipher
D.1
import math
def get_if_prime(val):
max = math.sqrt(val);
if (val % 2 == 0):
return (False);
if (val % 3 == 0):
return (False);
for k in range(0, 10000):
testval = 6 * k + 1;
if (testval>max):
break
if (val % testval == 0):
return (False)
testval = 6 * k - 1;
if (testval>max):
break
if (val % testval == 0):
return (False)
return (true)
val=93
res = get_if_prime(val)
if (res==True):
print str(val)+" is prime"
else:
print str(val)+" is not prime"
D.2
import sys
test=1000
if (len(sys.argv)>1):
test=int(sys.argv[1])
def sieve_for_primes_to(n):
size = n//2
sieve = [1]*size
limit = int(n**0.5)
for i in range(1,limit):
if sieve[i]:
val = 2*i+1
tmp = ((size-1) - i)//val
sieve[i+val::val] = [0]*tmp
return [2] + [i*2+1 for i, v in enumerate(sieve) if v and i>0]
print sieve_for_primes_to(test)
This works because we start with all the odd numbers up to the square root of the limit of the numbers we are looking for. If we have 100, then the size will be 50. We start off with odd numbers (as 2 is the only even prime):
3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 .. 99
In the first time round we have i equal to 1, and we will jump 3 each time and mark them as not prime:
3 5 7911 131517 192123 252729 313335 .. 9799
In the next time round, we will jump 5, starting at 5:
3 5 7 X 11 13X17 19 X 2325X 29 31 X35.. 97, X
In the next time round, we will jump 7, starting at 7:
3 5 7 X 11 13 X 17 19X23 X X 29 31 XX.. 97 99
In the next time round, we will jump 9, starting at 9:
3 5 7 X 11 13 X 17 19 X 23 XX29 31 X X .. 97 99
In the end we stop at 19, and with a jump of 19, and add the value of 2 to the discovered prime numbers:
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97
The marking of the factors follows this sequence:
[1, 3, 5, 7, 9, 11,13,15,17,19,21,23,25,27,29,31,33,35 .. ] [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0] [1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0] [1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0] [1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0] [1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0] [1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0] [1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0]