mirror of
https://github.com/aladdinpersson/Machine-Learning-Collection.git
synced 2026-02-20 13:50:41 +00:00
98 lines
2.9 KiB
Python
98 lines
2.9 KiB
Python
"""
|
|
From scratch implementation of K means clustering which is a unsupervised
|
|
clustering method that works by iteratively computing new centroids and
|
|
moving centroids to the center of the new formed clusters.
|
|
|
|
Programmed by Aladdin Persson <aladdin.persson at hotmail dot com>
|
|
* 2020-05-28 Initial coding
|
|
|
|
"""
|
|
|
|
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
from sklearn.datasets import make_blobs
|
|
|
|
|
|
class KMeansClustering:
|
|
def __init__(self, X, num_clusters):
|
|
self.K = num_clusters
|
|
self.max_iterations = 100
|
|
self.plot_figure = True
|
|
self.num_examples = X.shape[0]
|
|
self.num_features = X.shape[1]
|
|
|
|
def initialize_random_centroids(self, X):
|
|
centroids = np.zeros((self.K, self.num_features))
|
|
|
|
for k in range(self.K):
|
|
centroid = X[np.random.choice(range(self.num_examples))]
|
|
centroids[k] = centroid
|
|
|
|
return centroids
|
|
|
|
def create_clusters(self, X, centroids):
|
|
# Will contain a list of the points that are associated with that specific cluster
|
|
clusters = [[] for _ in range(self.K)]
|
|
|
|
# Loop through each point and check which is the closest cluster
|
|
for point_idx, point in enumerate(X):
|
|
closest_centroid = np.argmin(
|
|
np.sqrt(np.sum((point - centroids) ** 2, axis=1))
|
|
)
|
|
clusters[closest_centroid].append(point_idx)
|
|
|
|
return clusters
|
|
|
|
def calculate_new_centroids(self, clusters, X):
|
|
centroids = np.zeros((self.K, self.num_features))
|
|
for idx, cluster in enumerate(clusters):
|
|
new_centroid = np.mean(X[cluster], axis=0)
|
|
centroids[idx] = new_centroid
|
|
|
|
return centroids
|
|
|
|
def predict_cluster(self, clusters, X):
|
|
y_pred = np.zeros(self.num_examples)
|
|
|
|
for cluster_idx, cluster in enumerate(clusters):
|
|
for sample_idx in cluster:
|
|
y_pred[sample_idx] = cluster_idx
|
|
|
|
return y_pred
|
|
|
|
def plot_fig(self, X, y):
|
|
plt.scatter(X[:, 0], X[:, 1], c=y, s=40, cmap=plt.cm.Spectral)
|
|
plt.show()
|
|
|
|
def fit(self, X):
|
|
centroids = self.initialize_random_centroids(X)
|
|
|
|
for it in range(self.max_iterations):
|
|
clusters = self.create_clusters(X, centroids)
|
|
|
|
previous_centroids = centroids
|
|
centroids = self.calculate_new_centroids(clusters, X)
|
|
|
|
diff = centroids - previous_centroids
|
|
|
|
if not diff.any():
|
|
print("Termination criterion satisfied")
|
|
break
|
|
|
|
# Get label predictions
|
|
y_pred = self.predict_cluster(clusters, X)
|
|
|
|
if self.plot_figure:
|
|
self.plot_fig(X, y_pred)
|
|
|
|
return y_pred
|
|
|
|
|
|
if __name__ == "__main__":
|
|
np.random.seed(10)
|
|
num_clusters = 3
|
|
X, _ = make_blobs(n_samples=1000, n_features=2, centers=num_clusters)
|
|
|
|
Kmeans = KMeansClustering(X, num_clusters)
|
|
y_pred = Kmeans.fit(X)
|