Files
Machine-Learning-Collection/ML/Pytorch/pytorch_lightning/3. Lightning Trainer/simple_fc.py
Aladdin Persson e4659fe56a huggingface update
2023-03-18 09:51:16 +01:00

134 lines
4.0 KiB
Python

import torch
import torch.nn.functional as F
import torchvision.datasets as datasets
import torchvision.transforms as transforms
from torch import nn, optim
from torch.utils.data import DataLoader
from tqdm import tqdm
from torch.utils.data import random_split
import pytorch_lightning as pl
class NN(pl.LightningModule):
def __init__(self, input_size, num_classes):
super().__init__()
self.fc1 = nn.Linear(input_size, 50)
self.fc2 = nn.Linear(50, num_classes)
self.loss_fn = nn.CrossEntropyLoss()
def forward(self, x):
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
def training_step(self, batch, batch_idx):
loss, scores, y = self._common_step(batch, batch_idx)
self.log("train_loss", loss)
return loss
def validation_step(self, batch, batch_idx):
loss, scores, y = self._common_step(batch, batch_idx)
self.log("val_loss", loss)
return loss
def test_step(self, batch, batch_idx):
loss, scores, y = self._common_step(batch, batch_idx)
self.log("test_loss", loss)
return loss
def _common_step(self, batch, batch_idx):
x, y = batch
x = x.reshape(x.size(0), -1)
scores = self.forward(x)
loss = self.loss_fn(scores, y)
return loss, scores, y
def predict_step(self, batch, batch_idx):
x, y = batch
x = x.reshape(x.size(0), -1)
scores = self.forward(x)
preds = torch.argmax(scores, dim=1)
return preds
def configure_optimizers(self):
return optim.Adam(self.parameters(), lr=0.001)
# Set device cuda for GPU if it's available otherwise run on the CPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Hyperparameters
input_size = 784
num_classes = 10
learning_rate = 0.001
batch_size = 64
num_epochs = 3
# Load Data
entire_dataset = datasets.MNIST(
root="dataset/", train=True, transform=transforms.ToTensor(), download=True
)
train_ds, val_ds = random_split(entire_dataset, [50000, 10000])
test_ds = datasets.MNIST(
root="dataset/", train=False, transform=transforms.ToTensor(), download=True
)
train_loader = DataLoader(dataset=train_ds, batch_size=batch_size, shuffle=True)
val_loader = DataLoader(dataset=val_ds, batch_size=batch_size, shuffle=False)
test_loader = DataLoader(dataset=test_ds, batch_size=batch_size, shuffle=False)
# Initialize network
model = NN(input_size=input_size, num_classes=num_classes).to(device)
# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
trainer = pl.Trainer(
accelerator="gpu",
devices=1,
min_epochs=1,
max_epochs=3,
precision=16,
)
trainer.fit(model, train_loader, val_loader)
trainer.validate(model, val_loader)
trainer.test(model, test_loader)
# Check accuracy on training & test to see how good our model
def check_accuracy(loader, model):
num_correct = 0
num_samples = 0
model.eval()
# We don't need to keep track of gradients here so we wrap it in torch.no_grad()
with torch.no_grad():
# Loop through the data
for x, y in loader:
# Move data to device
x = x.to(device=device)
y = y.to(device=device)
# Get to correct shape
x = x.reshape(x.shape[0], -1)
# Forward pass
scores = model(x)
_, predictions = scores.max(1)
# Check how many we got correct
num_correct += (predictions == y).sum()
# Keep track of number of samples
num_samples += predictions.size(0)
model.train()
return num_correct / num_samples
# Check accuracy on training & test to see how good our model
model.to(device)
print(f"Accuracy on training set: {check_accuracy(train_loader, model)*100:.2f}")
print(f"Accuracy on validation set: {check_accuracy(val_loader, model)*100:.2f}")
print(f"Accuracy on test set: {check_accuracy(test_loader, model)*100:.2f}")