Files
Machine-Learning-Collection/ML/Pytorch/object_detection/YOLO/dataset.py
Aladdin Persson 65b8c80495 Initial commit
2021-01-30 21:49:15 +01:00

91 lines
3.0 KiB
Python
Executable File

"""
Creates a Pytorch dataset to load the Pascal VOC dataset
"""
import torch
import os
import pandas as pd
from PIL import Image
class VOCDataset(torch.utils.data.Dataset):
def __init__(
self, csv_file, img_dir, label_dir, S=7, B=2, C=20, transform=None,
):
self.annotations = pd.read_csv(csv_file)
self.img_dir = img_dir
self.label_dir = label_dir
self.transform = transform
self.S = S
self.B = B
self.C = C
def __len__(self):
return len(self.annotations)
def __getitem__(self, index):
label_path = os.path.join(self.label_dir, self.annotations.iloc[index, 1])
boxes = []
with open(label_path) as f:
for label in f.readlines():
class_label, x, y, width, height = [
float(x) if float(x) != int(float(x)) else int(x)
for x in label.replace("\n", "").split()
]
boxes.append([class_label, x, y, width, height])
img_path = os.path.join(self.img_dir, self.annotations.iloc[index, 0])
image = Image.open(img_path)
boxes = torch.tensor(boxes)
if self.transform:
# image = self.transform(image)
image, boxes = self.transform(image, boxes)
# Convert To Cells
label_matrix = torch.zeros((self.S, self.S, self.C + 5 * self.B))
for box in boxes:
class_label, x, y, width, height = box.tolist()
class_label = int(class_label)
# i,j represents the cell row and cell column
i, j = int(self.S * y), int(self.S * x)
x_cell, y_cell = self.S * x - j, self.S * y - i
"""
Calculating the width and height of cell of bounding box,
relative to the cell is done by the following, with
width as the example:
width_pixels = (width*self.image_width)
cell_pixels = (self.image_width)
Then to find the width relative to the cell is simply:
width_pixels/cell_pixels, simplification leads to the
formulas below.
"""
width_cell, height_cell = (
width * self.S,
height * self.S,
)
# If no object already found for specific cell i,j
# Note: This means we restrict to ONE object
# per cell!
if label_matrix[i, j, 20] == 0:
# Set that there exists an object
label_matrix[i, j, 20] = 1
# Box coordinates
box_coordinates = torch.tensor(
[x_cell, y_cell, width_cell, height_cell]
)
label_matrix[i, j, 21:25] = box_coordinates
# Set one hot encoding for class_label
label_matrix[i, j, class_label] = 1
return image, label_matrix