mirror of
https://github.com/aladdinpersson/Machine-Learning-Collection.git
synced 2026-02-21 11:18:01 +00:00
158 lines
5.3 KiB
Python
158 lines
5.3 KiB
Python
"""
|
|
Example code of a simple RNN, GRU, LSTM on the MNIST dataset.
|
|
|
|
Programmed by Aladdin Persson <aladdin.persson at hotmail dot com>
|
|
* 2020-05-09 Initial coding
|
|
|
|
"""
|
|
|
|
# Imports
|
|
import torch
|
|
import torchvision # torch package for vision related things
|
|
import torch.nn.functional as F # Parameterless functions, like (some) activation functions
|
|
import torchvision.datasets as datasets # Standard datasets
|
|
import torchvision.transforms as transforms # Transformations we can perform on our dataset for augmentation
|
|
from torch import optim # For optimizers like SGD, Adam, etc.
|
|
from torch import nn # All neural network modules
|
|
from torch.utils.data import DataLoader # Gives easier dataset managment by creating mini batches etc.
|
|
from tqdm import tqdm # For a nice progress bar!
|
|
|
|
# Set device
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
# Hyperparameters
|
|
input_size = 28
|
|
hidden_size = 256
|
|
num_layers = 2
|
|
num_classes = 10
|
|
sequence_length = 28
|
|
learning_rate = 0.005
|
|
batch_size = 64
|
|
num_epochs = 3
|
|
|
|
# Recurrent neural network (many-to-one)
|
|
class RNN(nn.Module):
|
|
def __init__(self, input_size, hidden_size, num_layers, num_classes):
|
|
super(RNN, self).__init__()
|
|
self.hidden_size = hidden_size
|
|
self.num_layers = num_layers
|
|
self.rnn = nn.RNN(input_size, hidden_size, num_layers, batch_first=True)
|
|
self.fc = nn.Linear(hidden_size * sequence_length, num_classes)
|
|
|
|
def forward(self, x):
|
|
# Set initial hidden and cell states
|
|
h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device)
|
|
|
|
# Forward propagate LSTM
|
|
out, _ = self.rnn(x, h0)
|
|
out = out.reshape(out.shape[0], -1)
|
|
|
|
# Decode the hidden state of the last time step
|
|
out = self.fc(out)
|
|
return out
|
|
|
|
|
|
# Recurrent neural network with GRU (many-to-one)
|
|
class RNN_GRU(nn.Module):
|
|
def __init__(self, input_size, hidden_size, num_layers, num_classes):
|
|
super(RNN_GRU, self).__init__()
|
|
self.hidden_size = hidden_size
|
|
self.num_layers = num_layers
|
|
self.gru = nn.GRU(input_size, hidden_size, num_layers, batch_first=True)
|
|
self.fc = nn.Linear(hidden_size * sequence_length, num_classes)
|
|
|
|
def forward(self, x):
|
|
# Set initial hidden and cell states
|
|
h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device)
|
|
|
|
# Forward propagate LSTM
|
|
out, _ = self.gru(x, h0)
|
|
out = out.reshape(out.shape[0], -1)
|
|
|
|
# Decode the hidden state of the last time step
|
|
out = self.fc(out)
|
|
return out
|
|
|
|
|
|
# Recurrent neural network with LSTM (many-to-one)
|
|
class RNN_LSTM(nn.Module):
|
|
def __init__(self, input_size, hidden_size, num_layers, num_classes):
|
|
super(RNN_LSTM, self).__init__()
|
|
self.hidden_size = hidden_size
|
|
self.num_layers = num_layers
|
|
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)
|
|
self.fc = nn.Linear(hidden_size * sequence_length, num_classes)
|
|
|
|
def forward(self, x):
|
|
# Set initial hidden and cell states
|
|
h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device)
|
|
c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device)
|
|
|
|
# Forward propagate LSTM
|
|
out, _ = self.lstm(
|
|
x, (h0, c0)
|
|
) # out: tensor of shape (batch_size, seq_length, hidden_size)
|
|
out = out.reshape(out.shape[0], -1)
|
|
|
|
# Decode the hidden state of the last time step
|
|
out = self.fc(out)
|
|
return out
|
|
|
|
|
|
# Load Data
|
|
train_dataset = datasets.MNIST(root="dataset/", train=True, transform=transforms.ToTensor(), download=True)
|
|
test_dataset = datasets.MNIST(root="dataset/", train=False, transform=transforms.ToTensor(), download=True)
|
|
train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
|
|
test_loader = DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=True)
|
|
|
|
# Initialize network (try out just using simple RNN, or GRU, and then compare with LSTM)
|
|
model = RNN_LSTM(input_size, hidden_size, num_layers, num_classes).to(device)
|
|
|
|
# Loss and optimizer
|
|
criterion = nn.CrossEntropyLoss()
|
|
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
|
|
|
|
# Train Network
|
|
for epoch in range(num_epochs):
|
|
for batch_idx, (data, targets) in enumerate(tqdm(train_loader)):
|
|
# Get data to cuda if possible
|
|
data = data.to(device=device).squeeze(1)
|
|
targets = targets.to(device=device)
|
|
|
|
# forward
|
|
scores = model(data)
|
|
loss = criterion(scores, targets)
|
|
|
|
# backward
|
|
optimizer.zero_grad()
|
|
loss.backward()
|
|
|
|
# gradient descent update step/adam step
|
|
optimizer.step()
|
|
|
|
# Check accuracy on training & test to see how good our model
|
|
def check_accuracy(loader, model):
|
|
num_correct = 0
|
|
num_samples = 0
|
|
|
|
# Set model to eval
|
|
model.eval()
|
|
|
|
with torch.no_grad():
|
|
for x, y in loader:
|
|
x = x.to(device=device).squeeze(1)
|
|
y = y.to(device=device)
|
|
|
|
scores = model(x)
|
|
_, predictions = scores.max(1)
|
|
num_correct += (predictions == y).sum()
|
|
num_samples += predictions.size(0)
|
|
|
|
# Toggle model back to train
|
|
model.train()
|
|
return num_correct / num_samples
|
|
|
|
|
|
print(f"Accuracy on training set: {check_accuracy(train_loader, model)*100:2f}")
|
|
print(f"Accuracy on test set: {check_accuracy(test_loader, model)*100:.2f}")
|