Files
Machine-Learning-Collection/ML/Pytorch/GANs/4. WGAN-GP/utils.py
Aladdin Persson 65b8c80495 Initial commit
2021-01-30 21:49:15 +01:00

35 lines
1.1 KiB
Python

import torch
import torch.nn as nn
def gradient_penalty(critic, real, fake, device="cpu"):
BATCH_SIZE, C, H, W = real.shape
alpha = torch.rand((BATCH_SIZE, 1, 1, 1)).repeat(1, C, H, W).to(device)
interpolated_images = real * alpha + fake * (1 - alpha)
# Calculate critic scores
mixed_scores = critic(interpolated_images)
# Take the gradient of the scores with respect to the images
gradient = torch.autograd.grad(
inputs=interpolated_images,
outputs=mixed_scores,
grad_outputs=torch.ones_like(mixed_scores),
create_graph=True,
retain_graph=True,
)[0]
gradient = gradient.view(gradient.shape[0], -1)
gradient_norm = gradient.norm(2, dim=1)
gradient_penalty = torch.mean((gradient_norm - 1) ** 2)
return gradient_penalty
def save_checkpoint(state, filename="celeba_wgan_gp.pth.tar"):
print("=> Saving checkpoint")
torch.save(state, filename)
def load_checkpoint(checkpoint, gen, disc):
print("=> Loading checkpoint")
gen.load_state_dict(checkpoint['gen'])
disc.load_state_dict(checkpoint['disc'])