mirror of
https://github.com/aladdinpersson/Machine-Learning-Collection.git
synced 2026-02-21 11:18:01 +00:00
132 lines
4.3 KiB
Python
132 lines
4.3 KiB
Python
"""
|
|
Example code of how to code GANs and more specifically DCGAN,
|
|
for more information about DCGANs read: https://arxiv.org/abs/1511.06434
|
|
|
|
We then train the DCGAN on the MNIST dataset (toy dataset of handwritten digits)
|
|
and then generate our own. You can apply this more generally on really any dataset
|
|
but MNIST is simple enough to get the overall idea.
|
|
|
|
Video explanation: https://youtu.be/5RYETbFFQ7s
|
|
Got any questions leave a comment on youtube :)
|
|
|
|
Programmed by Aladdin Persson <aladdin.persson at hotmail dot com>
|
|
* 2020-04-20 Initial coding
|
|
|
|
"""
|
|
|
|
# Imports
|
|
import torch
|
|
import torchvision
|
|
import torch.nn as nn # All neural network modules, nn.Linear, nn.Conv2d, BatchNorm, Loss functions
|
|
import torch.optim as optim # For all Optimization algorithms, SGD, Adam, etc.
|
|
import torchvision.datasets as datasets # Has standard datasets we can import in a nice way
|
|
import torchvision.transforms as transforms # Transformations we can perform on our dataset
|
|
from torch.utils.data import (
|
|
DataLoader,
|
|
) # Gives easier dataset managment and creates mini batches
|
|
from torch.utils.tensorboard import SummaryWriter # to print to tensorboard
|
|
from model_utils import (
|
|
Discriminator,
|
|
Generator,
|
|
) # Import our models we've defined (from DCGAN paper)
|
|
|
|
# Hyperparameters
|
|
lr = 0.0005
|
|
batch_size = 64
|
|
image_size = 64
|
|
channels_img = 1
|
|
channels_noise = 256
|
|
num_epochs = 10
|
|
|
|
# For how many channels Generator and Discriminator should use
|
|
features_d = 16
|
|
features_g = 16
|
|
|
|
my_transforms = transforms.Compose(
|
|
[
|
|
transforms.Resize(image_size),
|
|
transforms.ToTensor(),
|
|
transforms.Normalize((0.5,), (0.5,)),
|
|
]
|
|
)
|
|
|
|
dataset = datasets.MNIST(
|
|
root="dataset/", train=True, transform=my_transforms, download=True
|
|
)
|
|
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
# Create discriminator and generator
|
|
netD = Discriminator(channels_img, features_d).to(device)
|
|
netG = Generator(channels_noise, channels_img, features_g).to(device)
|
|
|
|
# Setup Optimizer for G and D
|
|
optimizerD = optim.Adam(netD.parameters(), lr=lr, betas=(0.5, 0.999))
|
|
optimizerG = optim.Adam(netG.parameters(), lr=lr, betas=(0.5, 0.999))
|
|
|
|
netG.train()
|
|
netD.train()
|
|
|
|
criterion = nn.BCELoss()
|
|
|
|
real_label = 1
|
|
fake_label = 0
|
|
|
|
fixed_noise = torch.randn(64, channels_noise, 1, 1).to(device)
|
|
writer_real = SummaryWriter(f"runs/GAN_MNIST/test_real")
|
|
writer_fake = SummaryWriter(f"runs/GAN_MNIST/test_fake")
|
|
step = 0
|
|
|
|
print("Starting Training...")
|
|
|
|
for epoch in range(num_epochs):
|
|
for batch_idx, (data, targets) in enumerate(dataloader):
|
|
data = data.to(device)
|
|
batch_size = data.shape[0]
|
|
|
|
### Train Discriminator: max log(D(x)) + log(1 - D(G(z)))
|
|
netD.zero_grad()
|
|
label = (torch.ones(batch_size) * 0.9).to(device)
|
|
output = netD(data).reshape(-1)
|
|
lossD_real = criterion(output, label)
|
|
D_x = output.mean().item()
|
|
|
|
noise = torch.randn(batch_size, channels_noise, 1, 1).to(device)
|
|
fake = netG(noise)
|
|
label = (torch.ones(batch_size) * 0.1).to(device)
|
|
|
|
output = netD(fake.detach()).reshape(-1)
|
|
lossD_fake = criterion(output, label)
|
|
|
|
lossD = lossD_real + lossD_fake
|
|
lossD.backward()
|
|
optimizerD.step()
|
|
|
|
### Train Generator: max log(D(G(z)))
|
|
netG.zero_grad()
|
|
label = torch.ones(batch_size).to(device)
|
|
output = netD(fake).reshape(-1)
|
|
lossG = criterion(output, label)
|
|
lossG.backward()
|
|
optimizerG.step()
|
|
|
|
# Print losses ocassionally and print to tensorboard
|
|
if batch_idx % 100 == 0:
|
|
step += 1
|
|
print(
|
|
f"Epoch [{epoch}/{num_epochs}] Batch {batch_idx}/{len(dataloader)} \
|
|
Loss D: {lossD:.4f}, loss G: {lossG:.4f} D(x): {D_x:.4f}"
|
|
)
|
|
|
|
with torch.no_grad():
|
|
fake = netG(fixed_noise)
|
|
img_grid_real = torchvision.utils.make_grid(data[:32], normalize=True)
|
|
img_grid_fake = torchvision.utils.make_grid(fake[:32], normalize=True)
|
|
writer_real.add_image(
|
|
"Mnist Real Images", img_grid_real, global_step=step
|
|
)
|
|
writer_fake.add_image(
|
|
"Mnist Fake Images", img_grid_fake, global_step=step
|
|
)
|