mirror of
https://github.com/aladdinpersson/Machine-Learning-Collection.git
synced 2026-02-21 19:27:58 +00:00
177 lines
5.2 KiB
Python
177 lines
5.2 KiB
Python
"""
|
|
Implementation of YOLOv3 architecture
|
|
"""
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
"""
|
|
Information about architecture config:
|
|
Tuple is structured by (filters, kernel_size, stride)
|
|
Every conv is a same convolution.
|
|
List is structured by "B" indicating a residual block followed by the number of repeats
|
|
"S" is for scale prediction block and computing the yolo loss
|
|
"U" is for upsampling the feature map and concatenating with a previous layer
|
|
"""
|
|
config = [
|
|
(32, 3, 1),
|
|
(64, 3, 2),
|
|
["B", 1],
|
|
(128, 3, 2),
|
|
["B", 2],
|
|
(256, 3, 2),
|
|
["B", 8],
|
|
(512, 3, 2),
|
|
["B", 8],
|
|
(1024, 3, 2),
|
|
["B", 4], # To this point is Darknet-53
|
|
(512, 1, 1),
|
|
(1024, 3, 1),
|
|
"S",
|
|
(256, 1, 1),
|
|
"U",
|
|
(256, 1, 1),
|
|
(512, 3, 1),
|
|
"S",
|
|
(128, 1, 1),
|
|
"U",
|
|
(128, 1, 1),
|
|
(256, 3, 1),
|
|
"S",
|
|
]
|
|
|
|
|
|
class CNNBlock(nn.Module):
|
|
def __init__(self, in_channels, out_channels, bn_act=True, **kwargs):
|
|
super().__init__()
|
|
self.conv = nn.Conv2d(in_channels, out_channels, bias=not bn_act, **kwargs)
|
|
self.bn = nn.BatchNorm2d(out_channels)
|
|
self.leaky = nn.LeakyReLU(0.1)
|
|
self.use_bn_act = bn_act
|
|
|
|
def forward(self, x):
|
|
if self.use_bn_act:
|
|
return self.leaky(self.bn(self.conv(x)))
|
|
else:
|
|
return self.conv(x)
|
|
|
|
|
|
class ResidualBlock(nn.Module):
|
|
def __init__(self, channels, use_residual=True, num_repeats=1):
|
|
super().__init__()
|
|
self.layers = nn.ModuleList()
|
|
for repeat in range(num_repeats):
|
|
self.layers += [
|
|
nn.Sequential(
|
|
CNNBlock(channels, channels // 2, kernel_size=1),
|
|
CNNBlock(channels // 2, channels, kernel_size=3, padding=1),
|
|
)
|
|
]
|
|
|
|
self.use_residual = use_residual
|
|
self.num_repeats = num_repeats
|
|
|
|
def forward(self, x):
|
|
for layer in self.layers:
|
|
if self.use_residual:
|
|
x = x + layer(x)
|
|
else:
|
|
x = layer(x)
|
|
|
|
return x
|
|
|
|
|
|
class ScalePrediction(nn.Module):
|
|
def __init__(self, in_channels, num_classes):
|
|
super().__init__()
|
|
self.pred = nn.Sequential(
|
|
CNNBlock(in_channels, 2 * in_channels, kernel_size=3, padding=1),
|
|
CNNBlock(
|
|
2 * in_channels, (num_classes + 5) * 3, bn_act=False, kernel_size=1
|
|
),
|
|
)
|
|
self.num_classes = num_classes
|
|
|
|
def forward(self, x):
|
|
return (
|
|
self.pred(x)
|
|
.reshape(x.shape[0], 3, self.num_classes + 5, x.shape[2], x.shape[3])
|
|
.permute(0, 1, 3, 4, 2)
|
|
)
|
|
|
|
|
|
class YOLOv3(nn.Module):
|
|
def __init__(self, in_channels=3, num_classes=80):
|
|
super().__init__()
|
|
self.num_classes = num_classes
|
|
self.in_channels = in_channels
|
|
self.layers = self._create_conv_layers()
|
|
|
|
def forward(self, x):
|
|
outputs = [] # for each scale
|
|
route_connections = []
|
|
for layer in self.layers:
|
|
if isinstance(layer, ScalePrediction):
|
|
outputs.append(layer(x))
|
|
continue
|
|
|
|
x = layer(x)
|
|
|
|
if isinstance(layer, ResidualBlock) and layer.num_repeats == 8:
|
|
route_connections.append(x)
|
|
|
|
elif isinstance(layer, nn.Upsample):
|
|
x = torch.cat([x, route_connections[-1]], dim=1)
|
|
route_connections.pop()
|
|
|
|
return outputs
|
|
|
|
def _create_conv_layers(self):
|
|
layers = nn.ModuleList()
|
|
in_channels = self.in_channels
|
|
|
|
for module in config:
|
|
if isinstance(module, tuple):
|
|
out_channels, kernel_size, stride = module
|
|
layers.append(
|
|
CNNBlock(
|
|
in_channels,
|
|
out_channels,
|
|
kernel_size=kernel_size,
|
|
stride=stride,
|
|
padding=1 if kernel_size == 3 else 0,
|
|
)
|
|
)
|
|
in_channels = out_channels
|
|
|
|
elif isinstance(module, list):
|
|
num_repeats = module[1]
|
|
layers.append(ResidualBlock(in_channels, num_repeats=num_repeats,))
|
|
|
|
elif isinstance(module, str):
|
|
if module == "S":
|
|
layers += [
|
|
ResidualBlock(in_channels, use_residual=False, num_repeats=1),
|
|
CNNBlock(in_channels, in_channels // 2, kernel_size=1),
|
|
ScalePrediction(in_channels // 2, num_classes=self.num_classes),
|
|
]
|
|
in_channels = in_channels // 2
|
|
|
|
elif module == "U":
|
|
layers.append(nn.Upsample(scale_factor=2),)
|
|
in_channels = in_channels * 3
|
|
|
|
return layers
|
|
|
|
|
|
if __name__ == "__main__":
|
|
num_classes = 20
|
|
IMAGE_SIZE = 416
|
|
model = YOLOv3(num_classes=num_classes)
|
|
x = torch.randn((2, 3, IMAGE_SIZE, IMAGE_SIZE))
|
|
out = model(x)
|
|
assert model(x)[0].shape == (2, 3, IMAGE_SIZE//32, IMAGE_SIZE//32, num_classes + 5)
|
|
assert model(x)[1].shape == (2, 3, IMAGE_SIZE//16, IMAGE_SIZE//16, num_classes + 5)
|
|
assert model(x)[2].shape == (2, 3, IMAGE_SIZE//8, IMAGE_SIZE//8, num_classes + 5)
|
|
print("Success!")
|