mirror of
https://github.com/aladdinpersson/Machine-Learning-Collection.git
synced 2026-02-21 19:27:58 +00:00
111 lines
3.7 KiB
Python
111 lines
3.7 KiB
Python
"""
|
|
Training of WGAN-GP
|
|
"""
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.optim as optim
|
|
import torchvision
|
|
import torchvision.datasets as datasets
|
|
import torchvision.transforms as transforms
|
|
from torch.utils.data import DataLoader
|
|
from torch.utils.tensorboard import SummaryWriter
|
|
from utils import gradient_penalty, save_checkpoint, load_checkpoint
|
|
from model import Discriminator, Generator, initialize_weights
|
|
|
|
# Hyperparameters etc.
|
|
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
LEARNING_RATE = 1e-4
|
|
BATCH_SIZE = 64
|
|
IMAGE_SIZE = 64
|
|
CHANNELS_IMG = 1
|
|
Z_DIM = 100
|
|
NUM_EPOCHS = 100
|
|
FEATURES_CRITIC = 16
|
|
FEATURES_GEN = 16
|
|
CRITIC_ITERATIONS = 5
|
|
LAMBDA_GP = 10
|
|
|
|
transforms = transforms.Compose(
|
|
[
|
|
transforms.Resize(IMAGE_SIZE),
|
|
transforms.ToTensor(),
|
|
transforms.Normalize(
|
|
[0.5 for _ in range(CHANNELS_IMG)], [0.5 for _ in range(CHANNELS_IMG)]),
|
|
]
|
|
)
|
|
|
|
dataset = datasets.MNIST(root="dataset/", transform=transforms, download=True)
|
|
# comment mnist above and uncomment below for training on CelebA
|
|
#dataset = datasets.ImageFolder(root="celeb_dataset", transform=transforms)
|
|
loader = DataLoader(
|
|
dataset,
|
|
batch_size=BATCH_SIZE,
|
|
shuffle=True,
|
|
)
|
|
|
|
# initialize gen and disc, note: discriminator should be called critic,
|
|
# according to WGAN paper (since it no longer outputs between [0, 1])
|
|
gen = Generator(Z_DIM, CHANNELS_IMG, FEATURES_GEN).to(device)
|
|
critic = Discriminator(CHANNELS_IMG, FEATURES_CRITIC).to(device)
|
|
initialize_weights(gen)
|
|
initialize_weights(critic)
|
|
|
|
# initializate optimizer
|
|
opt_gen = optim.Adam(gen.parameters(), lr=LEARNING_RATE, betas=(0.0, 0.9))
|
|
opt_critic = optim.Adam(critic.parameters(), lr=LEARNING_RATE, betas=(0.0, 0.9))
|
|
|
|
# for tensorboard plotting
|
|
fixed_noise = torch.randn(32, Z_DIM, 1, 1).to(device)
|
|
writer_real = SummaryWriter(f"logs/GAN_MNIST/real")
|
|
writer_fake = SummaryWriter(f"logs/GAN_MNIST/fake")
|
|
step = 0
|
|
|
|
gen.train()
|
|
critic.train()
|
|
|
|
for epoch in range(NUM_EPOCHS):
|
|
# Target labels not needed! <3 unsupervised
|
|
for batch_idx, (real, _) in enumerate(loader):
|
|
real = real.to(device)
|
|
cur_batch_size = real.shape[0]
|
|
|
|
# Train Critic: max E[critic(real)] - E[critic(fake)]
|
|
# equivalent to minimizing the negative of that
|
|
for _ in range(CRITIC_ITERATIONS):
|
|
noise = torch.randn(cur_batch_size, Z_DIM, 1, 1).to(device)
|
|
fake = gen(noise)
|
|
critic_real = critic(real).reshape(-1)
|
|
critic_fake = critic(fake).reshape(-1)
|
|
gp = gradient_penalty(critic, real, fake, device=device)
|
|
loss_critic = (
|
|
-(torch.mean(critic_real) - torch.mean(critic_fake)) + LAMBDA_GP * gp
|
|
)
|
|
critic.zero_grad()
|
|
loss_critic.backward(retain_graph=True)
|
|
opt_critic.step()
|
|
|
|
# Train Generator: max E[critic(gen_fake)] <-> min -E[critic(gen_fake)]
|
|
gen_fake = critic(fake).reshape(-1)
|
|
loss_gen = -torch.mean(gen_fake)
|
|
gen.zero_grad()
|
|
loss_gen.backward()
|
|
opt_gen.step()
|
|
|
|
# Print losses occasionally and print to tensorboard
|
|
if batch_idx % 100 == 0 and batch_idx > 0:
|
|
print(
|
|
f"Epoch [{epoch}/{NUM_EPOCHS}] Batch {batch_idx}/{len(loader)} \
|
|
Loss D: {loss_critic:.4f}, loss G: {loss_gen:.4f}"
|
|
)
|
|
|
|
with torch.no_grad():
|
|
fake = gen(fixed_noise)
|
|
# take out (up to) 32 examples
|
|
img_grid_real = torchvision.utils.make_grid(real[:32], normalize=True)
|
|
img_grid_fake = torchvision.utils.make_grid(fake[:32], normalize=True)
|
|
|
|
writer_real.add_image("Real", img_grid_real, global_step=step)
|
|
writer_fake.add_image("Fake", img_grid_fake, global_step=step)
|
|
|
|
step += 1 |