mirror of
https://github.com/aladdinpersson/Machine-Learning-Collection.git
synced 2026-02-21 11:18:01 +00:00
69 lines
1.7 KiB
Python
69 lines
1.7 KiB
Python
import torch
|
|
import torch.nn as nn
|
|
|
|
|
|
class CNNBlock(nn.Module):
|
|
def __init__(self, in_channels, out_channels, stride):
|
|
super(CNNBlock, self).__init__()
|
|
self.conv = nn.Sequential(
|
|
nn.Conv2d(
|
|
in_channels, out_channels, 4, stride, 1, bias=False, padding_mode="reflect"
|
|
),
|
|
nn.BatchNorm2d(out_channels),
|
|
nn.LeakyReLU(0.2),
|
|
)
|
|
|
|
def forward(self, x):
|
|
return self.conv(x)
|
|
|
|
|
|
class Discriminator(nn.Module):
|
|
def __init__(self, in_channels=3, features=[64, 128, 256, 512]):
|
|
super().__init__()
|
|
self.initial = nn.Sequential(
|
|
nn.Conv2d(
|
|
in_channels * 2,
|
|
features[0],
|
|
kernel_size=4,
|
|
stride=2,
|
|
padding=1,
|
|
padding_mode="reflect",
|
|
),
|
|
nn.LeakyReLU(0.2),
|
|
)
|
|
|
|
layers = []
|
|
in_channels = features[0]
|
|
for feature in features[1:]:
|
|
layers.append(
|
|
CNNBlock(in_channels, feature, stride=1 if feature == features[-1] else 2),
|
|
)
|
|
in_channels = feature
|
|
|
|
layers.append(
|
|
nn.Conv2d(
|
|
in_channels, 1, kernel_size=4, stride=1, padding=1, padding_mode="reflect"
|
|
),
|
|
)
|
|
|
|
self.model = nn.Sequential(*layers)
|
|
|
|
def forward(self, x, y):
|
|
x = torch.cat([x, y], dim=1)
|
|
x = self.initial(x)
|
|
x = self.model(x)
|
|
return x
|
|
|
|
|
|
def test():
|
|
x = torch.randn((1, 3, 256, 256))
|
|
y = torch.randn((1, 3, 256, 256))
|
|
model = Discriminator(in_channels=3)
|
|
preds = model(x, y)
|
|
print(model)
|
|
print(preds.shape)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test()
|