mirror of
https://github.com/aladdinpersson/Machine-Learning-Collection.git
synced 2026-02-20 13:50:41 +00:00
191 lines
5.8 KiB
Python
191 lines
5.8 KiB
Python
""" Training of ProGAN using WGAN-GP loss"""
|
|
|
|
import torch
|
|
import torch.optim as optim
|
|
import torchvision.datasets as datasets
|
|
import torchvision.transforms as transforms
|
|
from torch.utils.data import DataLoader
|
|
from torch.utils.tensorboard import SummaryWriter
|
|
from utils import (
|
|
gradient_penalty,
|
|
plot_to_tensorboard,
|
|
save_checkpoint,
|
|
load_checkpoint,
|
|
generate_examples,
|
|
)
|
|
from model import Discriminator, Generator
|
|
from math import log2
|
|
from tqdm import tqdm
|
|
import config
|
|
|
|
torch.backends.cudnn.benchmarks = True
|
|
|
|
|
|
def get_loader(image_size):
|
|
transform = transforms.Compose(
|
|
[
|
|
transforms.Resize((image_size, image_size)),
|
|
transforms.ToTensor(),
|
|
transforms.RandomHorizontalFlip(p=0.5),
|
|
transforms.Normalize(
|
|
[0.5 for _ in range(config.CHANNELS_IMG)],
|
|
[0.5 for _ in range(config.CHANNELS_IMG)],
|
|
),
|
|
]
|
|
)
|
|
batch_size = config.BATCH_SIZES[int(log2(image_size / 4))]
|
|
dataset = datasets.ImageFolder(root=config.DATASET, transform=transform)
|
|
loader = DataLoader(
|
|
dataset,
|
|
batch_size=batch_size,
|
|
shuffle=True,
|
|
num_workers=config.NUM_WORKERS,
|
|
pin_memory=True,
|
|
)
|
|
return loader, dataset
|
|
|
|
|
|
def train_fn(
|
|
critic,
|
|
gen,
|
|
loader,
|
|
dataset,
|
|
step,
|
|
alpha,
|
|
opt_critic,
|
|
opt_gen,
|
|
tensorboard_step,
|
|
writer,
|
|
scaler_gen,
|
|
scaler_critic,
|
|
):
|
|
loop = tqdm(loader, leave=True)
|
|
for batch_idx, (real, _) in enumerate(loop):
|
|
real = real.to(config.DEVICE)
|
|
cur_batch_size = real.shape[0]
|
|
|
|
# Train Critic: max E[critic(real)] - E[critic(fake)] <-> min -E[critic(real)] + E[critic(fake)]
|
|
# which is equivalent to minimizing the negative of the expression
|
|
noise = torch.randn(cur_batch_size, config.Z_DIM, 1, 1).to(config.DEVICE)
|
|
|
|
with torch.cuda.amp.autocast():
|
|
fake = gen(noise, alpha, step)
|
|
critic_real = critic(real, alpha, step)
|
|
critic_fake = critic(fake.detach(), alpha, step)
|
|
gp = gradient_penalty(critic, real, fake, alpha, step, device=config.DEVICE)
|
|
loss_critic = (
|
|
-(torch.mean(critic_real) - torch.mean(critic_fake))
|
|
+ config.LAMBDA_GP * gp
|
|
+ (0.001 * torch.mean(critic_real ** 2))
|
|
)
|
|
|
|
opt_critic.zero_grad()
|
|
scaler_critic.scale(loss_critic).backward()
|
|
scaler_critic.step(opt_critic)
|
|
scaler_critic.update()
|
|
|
|
# Train Generator: max E[critic(gen_fake)] <-> min -E[critic(gen_fake)]
|
|
with torch.cuda.amp.autocast():
|
|
gen_fake = critic(fake, alpha, step)
|
|
loss_gen = -torch.mean(gen_fake)
|
|
|
|
opt_gen.zero_grad()
|
|
scaler_gen.scale(loss_gen).backward()
|
|
scaler_gen.step(opt_gen)
|
|
scaler_gen.update()
|
|
|
|
# Update alpha and ensure less than 1
|
|
alpha += cur_batch_size / (
|
|
(config.PROGRESSIVE_EPOCHS[step] * 0.5) * len(dataset)
|
|
)
|
|
alpha = min(alpha, 1)
|
|
|
|
if batch_idx % 500 == 0:
|
|
with torch.no_grad():
|
|
fixed_fakes = gen(config.FIXED_NOISE, alpha, step) * 0.5 + 0.5
|
|
plot_to_tensorboard(
|
|
writer,
|
|
loss_critic.item(),
|
|
loss_gen.item(),
|
|
real.detach(),
|
|
fixed_fakes.detach(),
|
|
tensorboard_step,
|
|
)
|
|
tensorboard_step += 1
|
|
|
|
loop.set_postfix(
|
|
gp=gp.item(),
|
|
loss_critic=loss_critic.item(),
|
|
)
|
|
|
|
return tensorboard_step, alpha
|
|
|
|
|
|
def main():
|
|
# initialize gen and disc, note: discriminator should be called critic,
|
|
# according to WGAN paper (since it no longer outputs between [0, 1])
|
|
# but really who cares..
|
|
gen = Generator(
|
|
config.Z_DIM, config.IN_CHANNELS, img_channels=config.CHANNELS_IMG
|
|
).to(config.DEVICE)
|
|
critic = Discriminator(
|
|
config.Z_DIM, config.IN_CHANNELS, img_channels=config.CHANNELS_IMG
|
|
).to(config.DEVICE)
|
|
|
|
# initialize optimizers and scalers for FP16 training
|
|
opt_gen = optim.Adam(gen.parameters(), lr=config.LEARNING_RATE, betas=(0.0, 0.99))
|
|
opt_critic = optim.Adam(
|
|
critic.parameters(), lr=config.LEARNING_RATE, betas=(0.0, 0.99)
|
|
)
|
|
scaler_critic = torch.cuda.amp.GradScaler()
|
|
scaler_gen = torch.cuda.amp.GradScaler()
|
|
|
|
# for tensorboard plotting
|
|
writer = SummaryWriter(f"logs/gan1")
|
|
|
|
if config.LOAD_MODEL:
|
|
load_checkpoint(
|
|
config.CHECKPOINT_GEN, gen, opt_gen, config.LEARNING_RATE,
|
|
)
|
|
load_checkpoint(
|
|
config.CHECKPOINT_CRITIC, critic, opt_critic, config.LEARNING_RATE,
|
|
)
|
|
|
|
gen.train()
|
|
critic.train()
|
|
|
|
tensorboard_step = 0
|
|
# start at step that corresponds to img size that we set in config
|
|
step = int(log2(config.START_TRAIN_AT_IMG_SIZE / 4))
|
|
for num_epochs in config.PROGRESSIVE_EPOCHS[step:]:
|
|
alpha = 1e-5 # start with very low alpha
|
|
loader, dataset = get_loader(4 * 2 ** step) # 4->0, 8->1, 16->2, 32->3, 64 -> 4
|
|
print(f"Current image size: {4 * 2 ** step}")
|
|
|
|
for epoch in range(num_epochs):
|
|
print(f"Epoch [{epoch+1}/{num_epochs}]")
|
|
tensorboard_step, alpha = train_fn(
|
|
critic,
|
|
gen,
|
|
loader,
|
|
dataset,
|
|
step,
|
|
alpha,
|
|
opt_critic,
|
|
opt_gen,
|
|
tensorboard_step,
|
|
writer,
|
|
scaler_gen,
|
|
scaler_critic,
|
|
)
|
|
|
|
if config.SAVE_MODEL:
|
|
save_checkpoint(gen, opt_gen, filename=config.CHECKPOINT_GEN)
|
|
save_checkpoint(critic, opt_critic, filename=config.CHECKPOINT_CRITIC)
|
|
|
|
step += 1 # progress to the next img size
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|