Files
Machine-Learning-Collection/ML/Pytorch/GANs/StyleGAN/model.py
2021-05-15 14:58:41 +02:00

294 lines
11 KiB
Python

import torch
import torch.nn as nn
import torch.nn.functional as F
from math import log2
factors = [1, 1, 1, 1, 1 / 2, 1 / 4, 1 / 8, 1 / 16, 1 / 32]
class PixelNorm(nn.Module):
def __init__(self):
super(PixelNorm, self).__init__()
self.epsilon = 1e-8
def forward(self, x):
return x / torch.sqrt(torch.mean(x ** 2, dim=1, keepdim=True) + self.epsilon)
class MappingNetwork(nn.Module):
def __init__(self, z_dim, w_dim):
super().__init__()
self.mapping = nn.Sequential(
PixelNorm(),
WSLinear(z_dim, w_dim),
nn.ReLU(),
WSLinear(w_dim, w_dim),
nn.ReLU(),
WSLinear(w_dim, w_dim),
nn.ReLU(),
WSLinear(w_dim, w_dim),
nn.ReLU(),
WSLinear(w_dim, w_dim),
nn.ReLU(),
WSLinear(w_dim, w_dim),
nn.ReLU(),
WSLinear(w_dim, w_dim),
nn.ReLU(),
WSLinear(w_dim, w_dim),
)
def forward(self, x):
return self.mapping(x)
class InjectNoise(nn.Module):
def __init__(self, channels):
super().__init__()
self.weight = nn.Parameter(torch.zeros(1, channels, 1, 1))
def forward(self, x):
noise = torch.randn((x.shape[0], 1, x.shape[2], x.shape[3]), device=x.device)
return x + self.weight * noise
class AdaIN(nn.Module):
def __init__(self, channels, w_dim):
super().__init__()
self.instance_norm = nn.InstanceNorm2d(channels)
self.style_scale = WSLinear(w_dim, channels)
self.style_bias = WSLinear(w_dim, channels)
def forward(self, x, w):
x = self.instance_norm(x)
style_scale = self.style_scale(w).unsqueeze(2).unsqueeze(3)
style_bias = self.style_bias(w).unsqueeze(2).unsqueeze(3)
return style_scale * x + style_bias
class WSConv2d(nn.Module):
def __init__(
self, in_channels, out_channels, kernel_size=3, stride=1, padding=1, gain=2,
):
super(WSConv2d, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding)
self.scale = (gain / (in_channels * (kernel_size ** 2))) ** 0.5
self.bias = self.conv.bias
self.conv.bias = None
# initialize conv layer
nn.init.normal_(self.conv.weight)
nn.init.zeros_(self.bias)
def forward(self, x):
return self.conv(x * self.scale) + self.bias.view(1, self.bias.shape[0], 1, 1)
class WSLinear(nn.Module):
def __init__(
self, in_features, out_features, gain=2,
):
super(WSLinear, self).__init__()
self.linear = nn.Linear(in_features, out_features)
self.scale = (gain / in_features)**0.5
self.bias = self.linear.bias
self.linear.bias = None
# initialize linear layer
nn.init.normal_(self.linear.weight)
nn.init.zeros_(self.bias)
def forward(self, x):
return self.linear(x * self.scale) + self.bias
class GenBlock(nn.Module):
def __init__(self, in_channels, out_channels, w_dim):
super(GenBlock, self).__init__()
self.conv1 = WSConv2d(in_channels, out_channels)
self.conv2 = WSConv2d(out_channels, out_channels)
self.leaky = nn.LeakyReLU(0.2, inplace=True)
self.inject_noise1 = InjectNoise(out_channels)
self.inject_noise2 = InjectNoise(out_channels)
self.adain1 = AdaIN(out_channels, w_dim)
self.adain2 = AdaIN(out_channels, w_dim)
def forward(self, x, w):
x = self.adain1(self.leaky(self.inject_noise1(self.conv1(x))), w)
x = self.adain2(self.leaky(self.inject_noise2(self.conv2(x))), w)
return x
class ConvBlock(nn.Module):
def __init__(self, in_channels, out_channels):
super(ConvBlock, self).__init__()
self.conv1 = WSConv2d(in_channels, out_channels)
self.conv2 = WSConv2d(out_channels, out_channels)
self.leaky = nn.LeakyReLU(0.2)
def forward(self, x):
x = self.leaky(self.conv1(x))
x = self.leaky(self.conv2(x))
return x
class Generator(nn.Module):
def __init__(self, z_dim, w_dim, in_channels, img_channels=3):
super(Generator, self).__init__()
self.starting_constant = nn.Parameter(torch.ones((1, in_channels, 4, 4)))
self.map = MappingNetwork(z_dim, w_dim)
self.initial_adain1 = AdaIN(in_channels, w_dim)
self.initial_adain2 = AdaIN(in_channels, w_dim)
self.initial_noise1 = InjectNoise(in_channels)
self.initial_noise2 = InjectNoise(in_channels)
self.initial_conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1)
self.leaky = nn.LeakyReLU(0.2, inplace=True)
self.initial_rgb = WSConv2d(
in_channels, img_channels, kernel_size=1, stride=1, padding=0
)
self.prog_blocks, self.rgb_layers = (
nn.ModuleList([]),
nn.ModuleList([self.initial_rgb]),
)
for i in range(len(factors) - 1): # -1 to prevent index error because of factors[i+1]
conv_in_c = int(in_channels * factors[i])
conv_out_c = int(in_channels * factors[i + 1])
self.prog_blocks.append(GenBlock(conv_in_c, conv_out_c, w_dim))
self.rgb_layers.append(
WSConv2d(conv_out_c, img_channels, kernel_size=1, stride=1, padding=0)
)
def fade_in(self, alpha, upscaled, generated):
# alpha should be scalar within [0, 1], and upscale.shape == generated.shape
return torch.tanh(alpha * generated + (1 - alpha) * upscaled)
def forward(self, noise, alpha, steps):
w = self.map(noise)
x = self.initial_adain1(self.initial_noise1(self.starting_constant), w)
x = self.initial_conv(x)
out = self.initial_adain2(self.leaky(self.initial_noise2(x)), w)
if steps == 0:
return self.initial_rgb(x)
for step in range(steps):
upscaled = F.interpolate(out, scale_factor=2, mode="bilinear")
out = self.prog_blocks[step](upscaled, w)
# The number of channels in upscale will stay the same, while
# out which has moved through prog_blocks might change. To ensure
# we can convert both to rgb we use different rgb_layers
# (steps-1) and steps for upscaled, out respectively
final_upscaled = self.rgb_layers[steps - 1](upscaled)
final_out = self.rgb_layers[steps](out)
return self.fade_in(alpha, final_upscaled, final_out)
class Discriminator(nn.Module):
def __init__(self, in_channels, img_channels=3):
super(Discriminator, self).__init__()
self.prog_blocks, self.rgb_layers = nn.ModuleList([]), nn.ModuleList([])
self.leaky = nn.LeakyReLU(0.2)
# here we work back ways from factors because the discriminator
# should be mirrored from the generator. So the first prog_block and
# rgb layer we append will work for input size 1024x1024, then 512->256-> etc
for i in range(len(factors) - 1, 0, -1):
conv_in = int(in_channels * factors[i])
conv_out = int(in_channels * factors[i - 1])
self.prog_blocks.append(ConvBlock(conv_in, conv_out))
self.rgb_layers.append(
WSConv2d(img_channels, conv_in, kernel_size=1, stride=1, padding=0)
)
# perhaps confusing name "initial_rgb" this is just the RGB layer for 4x4 input size
# did this to "mirror" the generator initial_rgb
self.initial_rgb = WSConv2d(
img_channels, in_channels, kernel_size=1, stride=1, padding=0
)
self.rgb_layers.append(self.initial_rgb)
self.avg_pool = nn.AvgPool2d(
kernel_size=2, stride=2
) # down sampling using avg pool
# this is the block for 4x4 input size
self.final_block = nn.Sequential(
# +1 to in_channels because we concatenate from MiniBatch std
WSConv2d(in_channels + 1, in_channels, kernel_size=3, padding=1),
nn.LeakyReLU(0.2),
WSConv2d(in_channels, in_channels, kernel_size=4, padding=0, stride=1),
nn.LeakyReLU(0.2),
WSConv2d(
in_channels, 1, kernel_size=1, padding=0, stride=1
), # we use this instead of linear layer
)
def fade_in(self, alpha, downscaled, out):
"""Used to fade in downscaled using avg pooling and output from CNN"""
# alpha should be scalar within [0, 1], and upscale.shape == generated.shape
return alpha * out + (1 - alpha) * downscaled
def minibatch_std(self, x):
batch_statistics = (
torch.std(x, dim=0).mean().repeat(x.shape[0], 1, x.shape[2], x.shape[3])
)
# we take the std for each example (across all channels, and pixels) then we repeat it
# for a single channel and concatenate it with the image. In this way the discriminator
# will get information about the variation in the batch/image
return torch.cat([x, batch_statistics], dim=1)
def forward(self, x, alpha, steps):
# where we should start in the list of prog_blocks, maybe a bit confusing but
# the last is for the 4x4. So example let's say steps=1, then we should start
# at the second to last because input_size will be 8x8. If steps==0 we just
# use the final block
cur_step = len(self.prog_blocks) - steps
# convert from rgb as initial step, this will depend on
# the image size (each will have it's on rgb layer)
out = self.leaky(self.rgb_layers[cur_step](x))
if steps == 0: # i.e, image is 4x4
out = self.minibatch_std(out)
return self.final_block(out).view(out.shape[0], -1)
# because prog_blocks might change the channels, for down scale we use rgb_layer
# from previous/smaller size which in our case correlates to +1 in the indexing
downscaled = self.leaky(self.rgb_layers[cur_step + 1](self.avg_pool(x)))
out = self.avg_pool(self.prog_blocks[cur_step](out))
# the fade_in is done first between the downscaled and the input
# this is opposite from the generator
out = self.fade_in(alpha, downscaled, out)
for step in range(cur_step + 1, len(self.prog_blocks)):
out = self.prog_blocks[step](out)
out = self.avg_pool(out)
out = self.minibatch_std(out)
return self.final_block(out).view(out.shape[0], -1)
if __name__ == "__main__":
Z_DIM = 512
W_DIM = 512
IN_CHANNELS = 512
gen = Generator(Z_DIM, W_DIM, IN_CHANNELS, img_channels=3).to("cuda")
disc = Discriminator(IN_CHANNELS, img_channels=3).to("cuda")
tot = 0
for param in gen.parameters():
tot += param.numel()
print(tot)
import sys
sys.exit()
for img_size in [4, 8, 16, 32, 64, 128, 256, 512, 1024]:
num_steps = int(log2(img_size / 4))
x = torch.randn((2, Z_DIM)).to("cuda")
z = gen(x, 0.5, steps=num_steps)
assert z.shape == (2, 3, img_size, img_size)
out = disc(z, alpha=0.5, steps=num_steps)
assert out.shape == (2, 1)
print(f"Success! At img size: {img_size}")