Files
Machine-Learning-Collection/ML/Pytorch/others/default_setups/image_classification/dataset.py
Aladdin Persson 65b8c80495 Initial commit
2021-01-30 21:49:15 +01:00

35 lines
1022 B
Python

import torch
import torch.nn as nn
import os
from torch.utils.data import Dataset
from PIL import Image
import numpy as np
class MyImageFolder(Dataset):
def __init__(self, root_dir, transform=None):
super(MyImageFolder, self).__init__()
self.data = []
self.root_dir = root_dir
self.transform = transform
self.class_names = os.listdir(root_dir)
for index, name in enumerate(self.class_names):
files = os.listdir(os.path.join(root_dir, name))
self.data += list(zip(files, [index]*len(files)))
def __len__(self):
return len(self.data)
def __getitem__(self, index):
img_file, label = self.data[index]
root_and_dir = os.path.join(self.root_dir, self.class_names[label])
image = np.array(Image.open(os.path.join(root_and_dir, img_file)))
if self.transform is not None:
augmentations = self.transform(image=image)
image = augmentations["image"]
return image, label