mirror of
https://github.com/aladdinpersson/Machine-Learning-Collection.git
synced 2026-02-20 13:50:41 +00:00
112 lines
3.4 KiB
Python
112 lines
3.4 KiB
Python
import torch
|
|
from dataset import FacialKeypointDataset
|
|
from torch import nn, optim
|
|
import os
|
|
import config
|
|
from torch.utils.data import DataLoader
|
|
from tqdm import tqdm
|
|
from efficientnet_pytorch import EfficientNet
|
|
from utils import (
|
|
load_checkpoint,
|
|
save_checkpoint,
|
|
get_rmse,
|
|
get_submission
|
|
)
|
|
|
|
|
|
def train_one_epoch(loader, model, optimizer, loss_fn, scaler, device):
|
|
losses = []
|
|
loop = tqdm(loader)
|
|
num_examples = 0
|
|
for batch_idx, (data, targets) in enumerate(loop):
|
|
data = data.to(device=device)
|
|
targets = targets.to(device=device)
|
|
|
|
# forward
|
|
scores = model(data)
|
|
scores[targets == -1] = -1
|
|
loss = loss_fn(scores, targets)
|
|
num_examples += torch.numel(scores[targets != -1])
|
|
losses.append(loss.item())
|
|
|
|
# backward
|
|
optimizer.zero_grad()
|
|
loss.backward()
|
|
optimizer.step()
|
|
|
|
print(f"Loss average over epoch: {(sum(losses)/num_examples)**0.5}")
|
|
|
|
|
|
def main():
|
|
train_ds = FacialKeypointDataset(
|
|
csv_file="data/train_4.csv",
|
|
transform=config.train_transforms,
|
|
)
|
|
train_loader = DataLoader(
|
|
train_ds,
|
|
batch_size=config.BATCH_SIZE,
|
|
num_workers=config.NUM_WORKERS,
|
|
pin_memory=config.PIN_MEMORY,
|
|
shuffle=True,
|
|
)
|
|
val_ds = FacialKeypointDataset(
|
|
transform=config.val_transforms,
|
|
csv_file="data/val_4.csv",
|
|
)
|
|
val_loader = DataLoader(
|
|
val_ds,
|
|
batch_size=config.BATCH_SIZE,
|
|
num_workers=config.NUM_WORKERS,
|
|
pin_memory=config.PIN_MEMORY,
|
|
shuffle=False,
|
|
)
|
|
|
|
test_ds = FacialKeypointDataset(
|
|
csv_file="data/test.csv",
|
|
transform=config.val_transforms,
|
|
train=False,
|
|
)
|
|
|
|
test_loader = DataLoader(
|
|
test_ds,
|
|
batch_size=1,
|
|
num_workers=config.NUM_WORKERS,
|
|
pin_memory=config.PIN_MEMORY,
|
|
shuffle=False,
|
|
)
|
|
loss_fn = nn.MSELoss(reduction="sum")
|
|
model = EfficientNet.from_pretrained("efficientnet-b0")
|
|
model._fc = nn.Linear(1280, 30)
|
|
model = model.to(config.DEVICE)
|
|
optimizer = optim.Adam(model.parameters(), lr=config.LEARNING_RATE, weight_decay=config.WEIGHT_DECAY)
|
|
scaler = torch.cuda.amp.GradScaler()
|
|
|
|
model_4 = EfficientNet.from_pretrained("efficientnet-b0")
|
|
model_4._fc = nn.Linear(1280, 30)
|
|
model_15 = EfficientNet.from_pretrained("efficientnet-b0")
|
|
model_15._fc = nn.Linear(1280, 30)
|
|
model_4 = model_4.to(config.DEVICE)
|
|
model_15 = model_15.to(config.DEVICE)
|
|
|
|
if config.LOAD_MODEL and config.CHECKPOINT_FILE in os.listdir():
|
|
load_checkpoint(torch.load(config.CHECKPOINT_FILE), model, optimizer, config.LEARNING_RATE)
|
|
load_checkpoint(torch.load("b0_4.pth.tar"), model_4, optimizer, config.LEARNING_RATE)
|
|
load_checkpoint(torch.load("b0_15.pth.tar"), model_15, optimizer, config.LEARNING_RATE)
|
|
|
|
get_submission(test_loader, test_ds, model_15, model_4)
|
|
|
|
for epoch in range(config.NUM_EPOCHS):
|
|
get_rmse(val_loader, model, loss_fn, config.DEVICE)
|
|
train_one_epoch(train_loader, model, optimizer, loss_fn, scaler, config.DEVICE)
|
|
|
|
# get on validation
|
|
if config.SAVE_MODEL:
|
|
checkpoint = {
|
|
"state_dict": model.state_dict(),
|
|
"optimizer": optimizer.state_dict(),
|
|
}
|
|
save_checkpoint(checkpoint, filename=config.CHECKPOINT_FILE)
|
|
|
|
if __name__ == "__main__":
|
|
main()
|