mirror of
https://github.com/aladdinpersson/Machine-Learning-Collection.git
synced 2026-02-20 13:50:41 +00:00
72 lines
2.4 KiB
Python
72 lines
2.4 KiB
Python
# Import folder where sorting algorithms
|
|
import sys
|
|
import unittest
|
|
import numpy as np
|
|
|
|
# For importing from different folders
|
|
# OBS: This is supposed to be done with automated testing,
|
|
# hence relative to folder we want to import from
|
|
sys.path.append("ML/algorithms/linearregression")
|
|
|
|
# If run from local:
|
|
# sys.path.append('../../ML/algorithms/linearregression/')
|
|
from linear_regression_normal_equation import linear_regression_normal_equation
|
|
|
|
|
|
class TestLinearRegression_NormalEq(unittest.TestCase):
|
|
def setUp(self):
|
|
# test cases we want to run
|
|
self.X1 = np.array([[0, 1, 2]]).T
|
|
self.y1 = np.array([1, 2, 3])
|
|
self.W1_correct = np.array([[1, 1]])
|
|
|
|
self.X2 = np.array([[0, 1]]).T
|
|
self.y2 = np.array([1, 0])
|
|
self.W2_correct = np.array([[1, -1]])
|
|
|
|
self.X3 = np.array([[1, 2, 3], [1, 2, 4]]).T
|
|
self.y3 = np.array([5, 10, 18])
|
|
self.W3_correct = np.array([[0, 2, 3]])
|
|
|
|
self.X4 = np.array([[0, 0]]).T
|
|
self.y4 = np.array([0, 0])
|
|
self.W4_correct = np.array([[0, 0]])
|
|
|
|
self.X5 = np.array([[0, 1, 2, 3, 4, 5]]).T
|
|
self.y5 = np.array([0, 0.99, 2.01, 2.99, 4.01, 4.99])
|
|
self.W5_correct = np.array([[0, 1]])
|
|
|
|
def test_perfectpositiveslope(self):
|
|
W = linear_regression_normal_equation(self.X1, self.y1)
|
|
print(W.shape)
|
|
print(self.W1_correct.shape)
|
|
boolean_array = np.isclose(W, self.W1_correct)
|
|
self.assertTrue(boolean_array.all())
|
|
|
|
def test_perfectnegativeslope(self):
|
|
W = linear_regression_normal_equation(self.X2, self.y2)
|
|
boolean_array = np.isclose(W, self.W2_correct)
|
|
self.assertTrue(boolean_array.all())
|
|
|
|
def test_multipledimension(self):
|
|
W = linear_regression_normal_equation(self.X3, self.y3)
|
|
print(W)
|
|
print(self.W3_correct)
|
|
boolean_array = np.isclose(W, self.W3_correct)
|
|
self.assertTrue(boolean_array.all())
|
|
|
|
def test_zeros(self):
|
|
W = linear_regression_normal_equation(self.X4, self.y4)
|
|
boolean_array = np.isclose(W, self.W4_correct)
|
|
self.assertTrue(boolean_array.all())
|
|
|
|
def test_noisydata(self):
|
|
W = linear_regression_normal_equation(self.X5, self.y5)
|
|
boolean_array = np.isclose(W, self.W5_correct, atol=1e-3)
|
|
self.assertTrue(boolean_array.all())
|
|
|
|
|
|
if __name__ == "__main__":
|
|
print("Running Linear Regression Normal Equation tests:")
|
|
unittest.main()
|