mirror of
https://github.com/aladdinpersson/Machine-Learning-Collection.git
synced 2026-02-21 19:27:58 +00:00
134 lines
4.0 KiB
Python
134 lines
4.0 KiB
Python
import torch
|
|
import torch.nn.functional as F
|
|
import torchvision.datasets as datasets
|
|
import torchvision.transforms as transforms
|
|
from torch import nn, optim
|
|
from torch.utils.data import DataLoader
|
|
from tqdm import tqdm
|
|
from torch.utils.data import random_split
|
|
import pytorch_lightning as pl
|
|
|
|
|
|
class NN(pl.LightningModule):
|
|
def __init__(self, input_size, num_classes):
|
|
super().__init__()
|
|
self.fc1 = nn.Linear(input_size, 50)
|
|
self.fc2 = nn.Linear(50, num_classes)
|
|
self.loss_fn = nn.CrossEntropyLoss()
|
|
|
|
def forward(self, x):
|
|
x = F.relu(self.fc1(x))
|
|
x = self.fc2(x)
|
|
return x
|
|
|
|
def training_step(self, batch, batch_idx):
|
|
loss, scores, y = self._common_step(batch, batch_idx)
|
|
self.log("train_loss", loss)
|
|
return loss
|
|
|
|
def validation_step(self, batch, batch_idx):
|
|
loss, scores, y = self._common_step(batch, batch_idx)
|
|
self.log("val_loss", loss)
|
|
return loss
|
|
|
|
def test_step(self, batch, batch_idx):
|
|
loss, scores, y = self._common_step(batch, batch_idx)
|
|
self.log("test_loss", loss)
|
|
return loss
|
|
|
|
def _common_step(self, batch, batch_idx):
|
|
x, y = batch
|
|
x = x.reshape(x.size(0), -1)
|
|
scores = self.forward(x)
|
|
loss = self.loss_fn(scores, y)
|
|
return loss, scores, y
|
|
|
|
def predict_step(self, batch, batch_idx):
|
|
x, y = batch
|
|
x = x.reshape(x.size(0), -1)
|
|
scores = self.forward(x)
|
|
preds = torch.argmax(scores, dim=1)
|
|
return preds
|
|
|
|
def configure_optimizers(self):
|
|
return optim.Adam(self.parameters(), lr=0.001)
|
|
|
|
|
|
# Set device cuda for GPU if it's available otherwise run on the CPU
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
# Hyperparameters
|
|
input_size = 784
|
|
num_classes = 10
|
|
learning_rate = 0.001
|
|
batch_size = 64
|
|
num_epochs = 3
|
|
|
|
# Load Data
|
|
entire_dataset = datasets.MNIST(
|
|
root="dataset/", train=True, transform=transforms.ToTensor(), download=True
|
|
)
|
|
train_ds, val_ds = random_split(entire_dataset, [50000, 10000])
|
|
test_ds = datasets.MNIST(
|
|
root="dataset/", train=False, transform=transforms.ToTensor(), download=True
|
|
)
|
|
train_loader = DataLoader(dataset=train_ds, batch_size=batch_size, shuffle=True)
|
|
val_loader = DataLoader(dataset=val_ds, batch_size=batch_size, shuffle=False)
|
|
test_loader = DataLoader(dataset=test_ds, batch_size=batch_size, shuffle=False)
|
|
|
|
# Initialize network
|
|
model = NN(input_size=input_size, num_classes=num_classes).to(device)
|
|
|
|
# Loss and optimizer
|
|
criterion = nn.CrossEntropyLoss()
|
|
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
|
|
|
|
trainer = pl.Trainer(
|
|
accelerator="gpu",
|
|
devices=1,
|
|
min_epochs=1,
|
|
max_epochs=3,
|
|
precision=16,
|
|
)
|
|
trainer.fit(model, train_loader, val_loader)
|
|
trainer.validate(model, val_loader)
|
|
trainer.test(model, test_loader)
|
|
|
|
# Check accuracy on training & test to see how good our model
|
|
def check_accuracy(loader, model):
|
|
num_correct = 0
|
|
num_samples = 0
|
|
model.eval()
|
|
|
|
# We don't need to keep track of gradients here so we wrap it in torch.no_grad()
|
|
with torch.no_grad():
|
|
# Loop through the data
|
|
for x, y in loader:
|
|
|
|
# Move data to device
|
|
x = x.to(device=device)
|
|
y = y.to(device=device)
|
|
|
|
# Get to correct shape
|
|
x = x.reshape(x.shape[0], -1)
|
|
|
|
# Forward pass
|
|
scores = model(x)
|
|
_, predictions = scores.max(1)
|
|
|
|
# Check how many we got correct
|
|
num_correct += (predictions == y).sum()
|
|
|
|
# Keep track of number of samples
|
|
num_samples += predictions.size(0)
|
|
|
|
model.train()
|
|
return num_correct / num_samples
|
|
|
|
|
|
# Check accuracy on training & test to see how good our model
|
|
model.to(device)
|
|
print(f"Accuracy on training set: {check_accuracy(train_loader, model)*100:.2f}")
|
|
print(f"Accuracy on validation set: {check_accuracy(val_loader, model)*100:.2f}")
|
|
print(f"Accuracy on test set: {check_accuracy(test_loader, model)*100:.2f}")
|