Files

90 lines
2.7 KiB
Python

import torch
import torch.nn.functional as F
import torchvision.datasets as datasets
import torchvision.transforms as transforms
from torch import nn, optim
from torch.utils.data import DataLoader
from tqdm import tqdm
import pytorch_lightning as pl
import torchmetrics
from torchmetrics import Metric
import torchvision
class NN(pl.LightningModule):
def __init__(self, input_size, learning_rate, num_classes):
super().__init__()
self.lr = learning_rate
self.fc1 = nn.Linear(input_size, 1_000_000)
self.fc2 = nn.Linear(1_000_000, num_classes)
self.loss_fn = nn.CrossEntropyLoss()
self.accuracy = torchmetrics.Accuracy(
task="multiclass", num_classes=num_classes
)
self.f1_score = torchmetrics.F1Score(task="multiclass", num_classes=num_classes)
def forward(self, x):
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
def training_step(self, batch, batch_idx):
x, y = batch
loss, scores, y = self._common_step(batch, batch_idx)
self.log_dict(
{
"train_loss": loss,
},
on_step=False,
on_epoch=True,
prog_bar=True,
)
if batch_idx % 100 == 0:
x = x[:8]
grid = torchvision.utils.make_grid(x.view(-1, 1, 28, 28))
self.logger.experiment.add_image("mnist_images", grid, self.global_step)
return {"loss": loss, "scores": scores, "y": y}
def training_epoch_end(self, outputs):
scores = torch.cat([x["scores"] for x in outputs])
y = torch.cat([x["y"] for x in outputs])
self.log_dict(
{
"train_acc": self.accuracy(scores, y),
"train_f1": self.f1_score(scores, y),
},
on_step=False,
on_epoch=True,
prog_bar=True,
)
def validation_step(self, batch, batch_idx):
loss, scores, y = self._common_step(batch, batch_idx)
self.log("val_loss", loss)
return loss
def test_step(self, batch, batch_idx):
loss, scores, y = self._common_step(batch, batch_idx)
self.log("test_loss", loss)
return loss
def _common_step(self, batch, batch_idx):
x, y = batch
x = x.reshape(x.size(0), -1)
scores = self.forward(x)
loss = self.loss_fn(scores, y)
return loss, scores, y
def predict_step(self, batch, batch_idx):
x, y = batch
x = x.reshape(x.size(0), -1)
scores = self.forward(x)
preds = torch.argmax(scores, dim=1)
return preds
def configure_optimizers(self):
return optim.Adam(self.parameters(), lr=self.lr)