Files
Aladdin Persson 65b8c80495 Initial commit
2021-01-30 21:49:15 +01:00

152 lines
4.3 KiB
Python

import torch
import torch.nn as nn
class residual_template(nn.Module):
expansion = 4
def __init__(self, in_channels, out_channels, stride=1, identity_downsample=None):
super().__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(out_channels)
self.conv2 = nn.Conv2d(
out_channels,
out_channels,
kernel_size=3,
stride=stride,
padding=1,
bias=False,
)
self.bn2 = nn.BatchNorm2d(out_channels)
self.conv3 = nn.Conv2d(
out_channels, out_channels * self.expansion, kernel_size=1, bias=False
)
self.bn3 = nn.BatchNorm2d(out_channels * self.expansion)
self.relu = nn.ReLU(inplace=True)
self.identity_downsample = identity_downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.identity_downsample is not None:
residual = self.identity_downsample(x)
out += residual
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, residual_template, layers, image_channel, num_classes=10):
self.in_channels = 64
super().__init__()
self.conv1 = nn.Conv2d(
in_channels=image_channel,
out_channels=64,
kernel_size=3,
stride=1,
padding=1,
bias=False,
)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.layer1 = self._make_layer(
residual_template, layers[0], channels=64, stride=1
)
self.layer2 = self._make_layer(
residual_template, layers[1], channels=128, stride=2
)
self.layer3 = self._make_layer(
residual_template, layers[2], channels=256, stride=2
)
self.layer4 = self._make_layer(
residual_template, layers[3], channels=512, stride=2
)
self.avgpool = nn.AvgPool2d(kernel_size=4, stride=1)
self.fc = nn.Linear(512 * residual_template.expansion, num_classes)
# initialize weights for conv layers, batch layers
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
def _make_layer(self, residual_template, num_residuals_blocks, channels, stride):
identity_downsample = None
if stride != 1 or self.in_channels != channels * residual_template.expansion:
identity_downsample = nn.Sequential(
nn.Conv2d(
self.in_channels,
channels * residual_template.expansion,
kernel_size=1,
stride=stride,
bias=False,
),
nn.BatchNorm2d(channels * residual_template.expansion),
)
layers = []
layers.append(
residual_template(self.in_channels, channels, stride, identity_downsample)
)
self.in_channels = channels * residual_template.expansion
for i in range(1, num_residuals_blocks):
layers.append(residual_template(self.in_channels, channels))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
def ResNet50(img_channel):
return ResNet(residual_template, [3, 4, 6, 3], img_channel)
def ResNet101(img_channel):
return ResNet(residual_template, [3, 4, 23, 3], img_channel)
def ResNet152(img_channel):
return ResNet(residual_template, [3, 8, 36, 3], img_channel)
def test():
net = ResNet152(img_channel=1)
y = net(torch.randn(64, 1, 32, 32))
print(y.size())
# test()