import torch from PIL import Image import albumentations as A from albumentations.pytorch import ToTensorV2 LOAD_MODEL = True SAVE_MODEL = True CHECKPOINT_GEN = "gen.pth" CHECKPOINT_DISC = "disc.pth" DEVICE = "cuda" if torch.cuda.is_available() else "cpu" LEARNING_RATE = 1e-4 NUM_EPOCHS = 10000 BATCH_SIZE = 16 LAMBDA_GP = 10 NUM_WORKERS = 4 HIGH_RES = 128 LOW_RES = HIGH_RES // 4 IMG_CHANNELS = 3 highres_transform = A.Compose( [ A.Normalize(mean=[0, 0, 0], std=[1, 1, 1]), ToTensorV2(), ] ) lowres_transform = A.Compose( [ A.Resize(width=LOW_RES, height=LOW_RES, interpolation=Image.BICUBIC), A.Normalize(mean=[0, 0, 0], std=[1, 1, 1]), ToTensorV2(), ] ) both_transforms = A.Compose( [ A.RandomCrop(width=HIGH_RES, height=HIGH_RES), A.HorizontalFlip(p=0.5), A.RandomRotate90(p=0.5), ] ) test_transform = A.Compose( [ A.Normalize(mean=[0, 0, 0], std=[1, 1, 1]), ToTensorV2(), ] )