import os os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2" import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers from tensorflow.keras.datasets import mnist physical_devices = tf.config.list_physical_devices("GPU") tf.config.experimental.set_memory_growth(physical_devices[0], True) (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train = x_train.reshape(-1, 28 * 28).astype("float32") / 255.0 x_test = x_test.reshape(-1, 28 * 28).astype("float32") / 255.0 # Sequential API (Very convenient, not very flexible) model = keras.Sequential( [ keras.Input(shape=(28 * 28)), layers.Dense(512, activation="relu"), layers.Dense(256, activation="relu"), layers.Dense(10), ] ) model = keras.Sequential() model.add(keras.Input(shape=(784))) model.add(layers.Dense(512, activation="relu")) model.add(layers.Dense(256, activation="relu", name="my_layer")) model.add(layers.Dense(10)) # Functional API (A bit more flexible) inputs = keras.Input(shape=(784)) x = layers.Dense(512, activation="relu", name="first_layer")(inputs) x = layers.Dense(256, activation="relu", name="second_layer")(x) outputs = layers.Dense(10, activation="softmax")(x) model = keras.Model(inputs=inputs, outputs=outputs) model.compile( loss=keras.losses.SparseCategoricalCrossentropy(from_logits=False), optimizer=keras.optimizers.Adam(lr=0.001), metrics=["accuracy"], ) model.fit(x_train, y_train, batch_size=32, epochs=5, verbose=2) model.evaluate(x_test, y_test, batch_size=32, verbose=2)