""" A from scratch implementation of the VGG architecture. Video explanation: https://youtu.be/ACmuBbuXn20 Got any questions leave a comment on youtube :) Programmed by Aladdin Persson * 2020-04-05 Initial coding """ # Imports import torch import torch.nn as nn # All neural network modules, nn.Linear, nn.Conv2d, BatchNorm, Loss functions VGG_types = { "VGG11": [64, "M", 128, "M", 256, 256, "M", 512, 512, "M", 512, 512, "M"], "VGG13": [64, 64, "M", 128, 128, "M", 256, 256, "M", 512, 512, "M", 512, 512, "M"], "VGG16": [ 64, 64, "M", 128, 128, "M", 256, 256, 256, "M", 512, 512, 512, "M", 512, 512, 512, "M", ], "VGG19": [ 64, 64, "M", 128, 128, "M", 256, 256, 256, 256, "M", 512, 512, 512, 512, "M", 512, 512, 512, 512, "M", ], } class VGG_net(nn.Module): def __init__(self, in_channels=3, num_classes=1000): super(VGG_net, self).__init__() self.in_channels = in_channels self.conv_layers = self.create_conv_layers(VGG_types["VGG16"]) self.fcs = nn.Sequential( nn.Linear(512 * 7 * 7, 4096), nn.ReLU(), nn.Dropout(p=0.5), nn.Linear(4096, 4096), nn.ReLU(), nn.Dropout(p=0.5), nn.Linear(4096, num_classes), ) def forward(self, x): x = self.conv_layers(x) x = x.reshape(x.shape[0], -1) x = self.fcs(x) return x def create_conv_layers(self, architecture): layers = [] in_channels = self.in_channels for x in architecture: if type(x) == int: out_channels = x layers += [ nn.Conv2d( in_channels=in_channels, out_channels=out_channels, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), ), nn.BatchNorm2d(x), nn.ReLU(), ] in_channels = x elif x == "M": layers += [nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2))] return nn.Sequential(*layers) if __name__ == "__main__": device = "cuda" if torch.cuda.is_available() else "cpu" model = VGG_net(in_channels=3, num_classes=1000).to(device) print(model) ## N = 3 (Mini batch size) # x = torch.randn(3, 3, 224, 224).to(device) # print(model(x).shape)