import pandas as pd import numpy as np import torch def get_predictions(loader, model, device): model.eval() saved_preds = [] true_labels = [] with torch.no_grad(): for x,y in loader: x = x.to(device) y = y.to(device) scores = model(x) saved_preds += scores.tolist() true_labels += y.tolist() model.train() return saved_preds, true_labels def get_submission(model, loader, test_ids, device): all_preds = [] model.eval() with torch.no_grad(): for x,y in loader: print(x.shape) x = x.to(device) score = model(x) prediction = score.float() all_preds += prediction.tolist() model.train() df = pd.DataFrame({ "ID_code" : test_ids.values, "target" : np.array(all_preds) }) df.to_csv("sub.csv", index=False)