import torch from torch import nn class ConvBlock(nn.Module): def __init__(self, in_channels, out_channels, use_act, **kwargs): super().__init__() self.cnn = nn.Conv2d( in_channels, out_channels, **kwargs, bias=True, ) self.act = nn.LeakyReLU(0.2, inplace=True) if use_act else nn.Identity() def forward(self, x): return self.act(self.cnn(x)) class UpsampleBlock(nn.Module): def __init__(self, in_c, scale_factor=2): super().__init__() self.upsample = nn.Upsample(scale_factor=scale_factor, mode="nearest") self.conv = nn.Conv2d(in_c, in_c, 3, 1, 1, bias=True) self.act = nn.LeakyReLU(0.2, inplace=True) def forward(self, x): return self.act(self.conv(self.upsample(x))) class DenseResidualBlock(nn.Module): def __init__(self, in_channels, channels=32, residual_beta=0.2): super().__init__() self.residual_beta = residual_beta self.blocks = nn.ModuleList() for i in range(5): self.blocks.append( ConvBlock( in_channels + channels * i, channels if i <= 3 else in_channels, kernel_size=3, stride=1, padding=1, use_act=True if i <= 3 else False, ) ) def forward(self, x): new_inputs = x for block in self.blocks: out = block(new_inputs) new_inputs = torch.cat([new_inputs, out], dim=1) return self.residual_beta * out + x class RRDB(nn.Module): def __init__(self, in_channels, residual_beta=0.2): super().__init__() self.residual_beta = residual_beta self.rrdb = nn.Sequential(*[DenseResidualBlock(in_channels) for _ in range(3)]) def forward(self, x): return self.rrdb(x) * self.residual_beta + x class Generator(nn.Module): def __init__(self, in_channels=3, num_channels=64, num_blocks=23): super().__init__() self.initial = nn.Conv2d( in_channels, num_channels, kernel_size=3, stride=1, padding=1, bias=True, ) self.residuals = nn.Sequential(*[RRDB(num_channels) for _ in range(num_blocks)]) self.conv = nn.Conv2d(num_channels, num_channels, kernel_size=3, stride=1, padding=1) self.upsamples = nn.Sequential( UpsampleBlock(num_channels), UpsampleBlock(num_channels), ) self.final = nn.Sequential( nn.Conv2d(num_channels, num_channels, 3, 1, 1, bias=True), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(num_channels, in_channels, 3, 1, 1, bias=True), ) def forward(self, x): initial = self.initial(x) x = self.conv(self.residuals(initial)) + initial x = self.upsamples(x) return self.final(x) class Discriminator(nn.Module): def __init__(self, in_channels=3, features=[64, 64, 128, 128, 256, 256, 512, 512]): super().__init__() blocks = [] for idx, feature in enumerate(features): blocks.append( ConvBlock( in_channels, feature, kernel_size=3, stride=1 + idx % 2, padding=1, use_act=True, ), ) in_channels = feature self.blocks = nn.Sequential(*blocks) self.classifier = nn.Sequential( nn.AdaptiveAvgPool2d((6, 6)), nn.Flatten(), nn.Linear(512 * 6 * 6, 1024), nn.LeakyReLU(0.2, inplace=True), nn.Linear(1024, 1), ) def forward(self, x): x = self.blocks(x) return self.classifier(x) def initialize_weights(model, scale=0.1): for m in model.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight.data) m.weight.data *= scale elif isinstance(m, nn.Linear): nn.init.kaiming_normal_(m.weight.data) m.weight.data *= scale def test(): gen = Generator() disc = Discriminator() low_res = 24 x = torch.randn((5, 3, low_res, low_res)) gen_out = gen(x) disc_out = disc(gen_out) print(gen_out.shape) print(disc_out.shape) if __name__ == "__main__": test()