import os os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2" import tensorflow as tf import pandas as pd from tensorflow import keras from tensorflow.keras import layers directory = "data/mnist_images_csv/" df = pd.read_csv(directory + "train.csv") file_paths = df["file_name"].values labels = df["label"].values ds_train = tf.data.Dataset.from_tensor_slices((file_paths, labels)) def read_image(image_file, label): image = tf.io.read_file(directory + image_file) image = tf.image.decode_image(image, channels=1, dtype=tf.float32) return image, label def augment(image, label): # data augmentation here return image, label ds_train = ds_train.map(read_image).map(augment).batch(2) for epoch in range(10): for x, y in ds_train: # train here pass model = keras.Sequential( [ layers.Input((28, 28, 1)), layers.Conv2D(16, 3, padding="same"), layers.Conv2D(32, 3, padding="same"), layers.MaxPooling2D(), layers.Flatten(), layers.Dense(10), ] ) model.compile( optimizer=keras.optimizers.Adam(), loss=[keras.losses.SparseCategoricalCrossentropy(from_logits=True),], metrics=["accuracy"], ) model.fit(ds_train, epochs=10, verbose=2)