import torch import torch.nn.functional as F import torchvision.datasets as datasets import torchvision.transforms as transforms from torch import nn, optim from torch.utils.data import DataLoader from tqdm import tqdm from torch.utils.data import random_split import pytorch_lightning as pl class NN(pl.LightningModule): def __init__(self, input_size, num_classes): super().__init__() self.fc1 = nn.Linear(input_size, 50) self.fc2 = nn.Linear(50, num_classes) self.loss_fn = nn.CrossEntropyLoss() def forward(self, x): x = F.relu(self.fc1(x)) x = self.fc2(x) return x def training_step(self, batch, batch_idx): loss, scores, y = self._common_step(batch, batch_idx) self.log('train_loss', loss) return loss def validation_step(self, batch, batch_idx): loss, scores, y = self._common_step(batch, batch_idx) self.log('val_loss', loss) return loss def test_step(self, batch, batch_idx): loss, scores, y = self._common_step(batch, batch_idx) self.log('test_loss', loss) return loss def _common_step(self, batch, batch_idx): x, y = batch x = x.reshape(x.size(0), -1) scores = self.forward(x) loss = self.loss_fn(scores, y) return loss, scores, y def predict_step(self, batch, batch_idx): x, y = batch x = x.reshape(x.size(0), -1) scores = self.forward(x) preds = torch.argmax(scores, dim=1) return preds def configure_optimizers(self): return optim.Adam(self.parameters(), lr=0.001) # Set device cuda for GPU if it's available otherwise run on the CPU device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Hyperparameters input_size = 784 num_classes = 10 learning_rate = 0.001 batch_size = 64 num_epochs = 3 # Load Data entire_dataset = datasets.MNIST( root="dataset/", train=True, transform=transforms.ToTensor(), download=True ) train_ds, val_ds = random_split(entire_dataset, [50000, 10000]) test_ds = datasets.MNIST( root="dataset/", train=False, transform=transforms.ToTensor(), download=True ) train_loader = DataLoader(dataset=train_ds, batch_size=batch_size, shuffle=True) val_loader = DataLoader(dataset=val_ds, batch_size=batch_size, shuffle=False) test_loader = DataLoader(dataset=test_ds, batch_size=batch_size, shuffle=False) # Initialize network model = NN(input_size=input_size, num_classes=num_classes).to(device) # Loss and optimizer criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=learning_rate) trainer = pl.Trainer(accelerator="gpu", devices=1, min_epochs=1, max_epochs=3, precision=16) trainer.fit(model, train_loader, val_loader) trainer.validate(model, val_loader) trainer.test(model, test_loader) # Check accuracy on training & test to see how good our model def check_accuracy(loader, model): num_correct = 0 num_samples = 0 model.eval() # We don't need to keep track of gradients here so we wrap it in torch.no_grad() with torch.no_grad(): # Loop through the data for x, y in loader: # Move data to device x = x.to(device=device) y = y.to(device=device) # Get to correct shape x = x.reshape(x.shape[0], -1) # Forward pass scores = model(x) _, predictions = scores.max(1) # Check how many we got correct num_correct += (predictions == y).sum() # Keep track of number of samples num_samples += predictions.size(0) model.train() return num_correct / num_samples # Check accuracy on training & test to see how good our model model.to(device) print(f"Accuracy on training set: {check_accuracy(train_loader, model)*100:.2f}") print(f"Accuracy on validation set: {check_accuracy(val_loader, model)*100:.2f}") print(f"Accuracy on test set: {check_accuracy(test_loader, model)*100:.2f}")