import torch import torch.nn.functional as F import torchvision.datasets as datasets import torchvision.transforms as transforms from torch import nn, optim from torch.utils.data import DataLoader from tqdm import tqdm import pytorch_lightning as pl import torchmetrics from torchmetrics import Metric class NN(pl.LightningModule): def __init__(self, input_size, learning_rate, num_classes): super().__init__() self.lr = learning_rate self.fc1 = nn.Linear(input_size, 50) self.fc2 = nn.Linear(50, num_classes) self.loss_fn = nn.CrossEntropyLoss() self.accuracy = torchmetrics.Accuracy( task="multiclass", num_classes=num_classes ) self.f1_score = torchmetrics.F1Score(task="multiclass", num_classes=num_classes) def forward(self, x): x = F.relu(self.fc1(x)) x = self.fc2(x) return x def training_step(self, batch, batch_idx): loss, scores, y = self._common_step(batch, batch_idx) accuracy = self.accuracy(scores, y) f1_score = self.f1_score(scores, y) self.log_dict( { "train_loss": loss, "train_accuracy": accuracy, "train_f1_score": f1_score, }, on_step=False, on_epoch=True, prog_bar=True, ) return {"loss": loss, "scores": scores, "y": y} def validation_step(self, batch, batch_idx): loss, scores, y = self._common_step(batch, batch_idx) self.log("val_loss", loss) return loss def test_step(self, batch, batch_idx): loss, scores, y = self._common_step(batch, batch_idx) self.log("test_loss", loss) return loss def _common_step(self, batch, batch_idx): x, y = batch x = x.reshape(x.size(0), -1) scores = self.forward(x) loss = self.loss_fn(scores, y) return loss, scores, y def predict_step(self, batch, batch_idx): x, y = batch x = x.reshape(x.size(0), -1) scores = self.forward(x) preds = torch.argmax(scores, dim=1) return preds def configure_optimizers(self): return optim.Adam(self.parameters(), lr=self.lr)