import albumentations as A import cv2 import torch from math import log2 from albumentations.pytorch import ToTensorV2 #from utils import seed_everything START_TRAIN_AT_IMG_SIZE = 32 DATASET = 'FFHQ_32' CHECKPOINT_GEN = "generator.pth" CHECKPOINT_CRITIC = "critic.pth" DEVICE = "cuda" if torch.cuda.is_available() else "cpu" LOAD_MODEL = False SAVE_MODEL = True LEARNING_RATE = 1e-3 BATCH_SIZES = [32, 32, 32, 32, 32, 16, 8, 4, 2] CHANNELS_IMG = 3 Z_DIM = 512 W_DIM = 512 IN_CHANNELS = 512 LAMBDA_GP = 10 PROGRESSIVE_EPOCHS = [50] * 100 FIXED_NOISE = torch.randn((8, Z_DIM)).to(DEVICE) NUM_WORKERS = 6