# Imports import torch import torch.nn as nn # All neural network modules, nn.Linear, nn.Conv2d, BatchNorm, Loss functions import torch.optim as optim # For all Optimization algorithms, SGD, Adam, etc. import torch.nn.functional as F # All functions that don't have any parameters from torch.utils.data import DataLoader # Gives easier dataset managment and creates mini batches import torchvision.datasets as datasets # Has standard datasets we can import in a nice way import torchvision.transforms as transforms # Transformations we can perform on our dataset # Simple CNN class CNN(nn.Module): def __init__(self, in_channels=1, num_classes=10): super(CNN, self).__init__() self.conv1 = nn.Conv2d(in_channels=1, out_channels=420, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) self.pool = nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2)) self.conv2 = nn.Conv2d(in_channels=420, out_channels=1000, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) self.fc1 = nn.Linear(1000 * 7 * 7, num_classes) def forward(self, x): x = F.relu(self.conv1(x)) x = self.pool(x) x = F.relu(self.conv2(x)) x = self.pool(x) x = x.reshape(x.shape[0], -1) x = self.fc1(x) return x # Set device device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # Hyperparameters in_channel = 1 num_classes = 10 learning_rate = 3e-4 batch_size = 100 num_epochs = 5 # Load Data train_dataset = datasets.MNIST(root='dataset/', train=True, transform=transforms.ToTensor(), download=True) train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True) test_dataset = datasets.MNIST(root='dataset/', train=False, transform=transforms.ToTensor(), download=True) test_loader = DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=True) # Initialize network model = CNN().to(device) # Loss and optimizer criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=learning_rate) # Necessary for FP16 scaler = torch.cuda.amp.GradScaler() # Train Network for epoch in range(num_epochs): for batch_idx, (data, targets) in enumerate(train_loader): # Get data to cuda if possible data = data.to(device=device) targets = targets.to(device=device) # forward with torch.cuda.amp.autocast(): scores = model(data) loss = criterion(scores, targets) # backward optimizer.zero_grad() scaler.scale(loss).backward() scaler.step(optimizer) scaler.update() # Check accuracy on training & test to see how good our model def check_accuracy(loader, model): num_correct = 0 num_samples = 0 model.eval() with torch.no_grad(): for x, y in loader: x = x.to(device=device) y = y.to(device=device) scores = model(x) _, predictions = scores.max(1) num_correct += (predictions == y).sum() num_samples += predictions.size(0) print(f'Got {num_correct} / {num_samples} with accuracy {float(num_correct) / float(num_samples) * 100:.2f}') model.train() check_accuracy(train_loader, model) check_accuracy(test_loader, model)