# disable tensorflow debugging messages import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' from vggnet import VGGNet # Integer value represents output channel after performing the convolution layer # 'M' represents the max pooling layer # After convolution blocks; flatten the output and use 4096x4096x1000 Linear Layers # with soft-max at the end VGG_types = { 'VGG11': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], 'VGG13': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], 'VGG16': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'], 'VGG19': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'], } if __name__ == "__main__": # test VGGNet16 model = VGGNet(name = "VGGNet16", architecture = VGG_types["VGG16"], input_shape=(224, 224, 3), classes = 1000) model.summary()